Properly scrape huggingface for download links (for #122)

This commit is contained in:
oobabooga 2023-02-24 14:06:42 -03:00
parent 8a7563ae84
commit fe1771157f
2 changed files with 46 additions and 39 deletions

View File

@ -6,6 +6,7 @@ python download-model.py facebook/opt-1.3b
'''
import argparse
import json
import multiprocessing
import re
import sys
@ -13,7 +14,6 @@ from pathlib import Path
import requests
import tqdm
from bs4 import BeautifulSoup
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
@ -90,6 +90,49 @@ facebook/opt-1.3b
return model, branch
def get_download_links_from_huggingface(model, branch):
base = "https://huggingface.co"
page = f"/api/models/{model}/tree/{branch}?cursor="
links = []
classifications = []
has_pytorch = False
has_safetensors = False
while page is not None:
content = requests.get(f"{base}{page}").content
dict = json.loads(content)
for i in range(len(dict['items'])):
fname = dict['items'][i]['path']
is_pytorch = re.match("pytorch_model.*\.bin", fname)
is_safetensors = re.match("model.*\.safetensors", fname)
is_text = re.match(".*\.(txt|json)", fname)
if is_text or is_safetensors or is_pytorch:
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
if not args.text_only:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
page = dict['nextUrl']
# If both pytorch and safetensors are available, download safetensors only
if has_pytorch and has_safetensors:
for i in range(len(classifications)-1, -1, -1):
if classifications[i] == 'pytorch':
links.pop(i)
return links
if __name__ == '__main__':
model = args.MODEL
branch = args.branch
@ -107,7 +150,6 @@ if __name__ == '__main__':
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
url = f'https://huggingface.co/{model}/tree/{branch}'
if branch != 'main':
output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
else:
@ -115,45 +157,11 @@ if __name__ == '__main__':
if not output_folder.exists():
output_folder.mkdir()
# Finding the relevant files to download
page = requests.get(url)
soup = BeautifulSoup(page.content, 'html.parser')
links = soup.find_all('a')
downloads = []
classifications = []
has_pytorch = False
has_safetensors = False
for link in links:
href = link.get('href')[1:]
if href.startswith(f'{model}/resolve/{branch}'):
fname = Path(href).name
is_pytorch = re.match("pytorch_model.*\.bin", fname)
is_safetensors = re.match("model.*\.safetensors", fname)
is_text = re.match(".*\.(txt|json)", fname)
if is_text or is_safetensors or is_pytorch:
if is_text:
downloads.append(f'https://huggingface.co/{href}')
classifications.append('text')
continue
if not args.text_only:
downloads.append(f'https://huggingface.co/{href}')
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
# If both pytorch and safetensors are available, download safetensors only
if has_pytorch and has_safetensors:
for i in range(len(classifications)-1, -1, -1):
if classifications[i] == 'pytorch':
downloads.pop(i)
links = get_download_links_from_huggingface(model, branch)
# Downloading the files
print(f"Downloading the model to {output_folder}")
pool = multiprocessing.Pool(processes=args.threads)
results = pool.map(get_file, [[downloads[i], output_folder, i+1, len(downloads)] for i in range(len(downloads))])
results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))])
pool.close()
pool.join()

View File

@ -1,5 +1,4 @@
accelerate==0.16.0
beautifulsoup4
bitsandbytes==0.37.0
gradio==3.18.0
numpy