mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Properly scrape huggingface for download links (for #122)
This commit is contained in:
parent
8a7563ae84
commit
fe1771157f
@ -6,6 +6,7 @@ python download-model.py facebook/opt-1.3b
|
||||
|
||||
'''
|
||||
import argparse
|
||||
import json
|
||||
import multiprocessing
|
||||
import re
|
||||
import sys
|
||||
@ -13,7 +14,6 @@ from pathlib import Path
|
||||
|
||||
import requests
|
||||
import tqdm
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('MODEL', type=str, default=None, nargs='?')
|
||||
@ -90,6 +90,49 @@ facebook/opt-1.3b
|
||||
|
||||
return model, branch
|
||||
|
||||
def get_download_links_from_huggingface(model, branch):
|
||||
base = "https://huggingface.co"
|
||||
page = f"/api/models/{model}/tree/{branch}?cursor="
|
||||
|
||||
links = []
|
||||
classifications = []
|
||||
has_pytorch = False
|
||||
has_safetensors = False
|
||||
while page is not None:
|
||||
content = requests.get(f"{base}{page}").content
|
||||
dict = json.loads(content)
|
||||
|
||||
for i in range(len(dict['items'])):
|
||||
fname = dict['items'][i]['path']
|
||||
|
||||
is_pytorch = re.match("pytorch_model.*\.bin", fname)
|
||||
is_safetensors = re.match("model.*\.safetensors", fname)
|
||||
is_text = re.match(".*\.(txt|json)", fname)
|
||||
|
||||
if is_text or is_safetensors or is_pytorch:
|
||||
if is_text:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
classifications.append('text')
|
||||
continue
|
||||
if not args.text_only:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
if is_safetensors:
|
||||
has_safetensors = True
|
||||
classifications.append('safetensors')
|
||||
elif is_pytorch:
|
||||
has_pytorch = True
|
||||
classifications.append('pytorch')
|
||||
|
||||
page = dict['nextUrl']
|
||||
|
||||
# If both pytorch and safetensors are available, download safetensors only
|
||||
if has_pytorch and has_safetensors:
|
||||
for i in range(len(classifications)-1, -1, -1):
|
||||
if classifications[i] == 'pytorch':
|
||||
links.pop(i)
|
||||
|
||||
return links
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = args.MODEL
|
||||
branch = args.branch
|
||||
@ -107,7 +150,6 @@ if __name__ == '__main__':
|
||||
except ValueError as err_branch:
|
||||
print(f"Error: {err_branch}")
|
||||
sys.exit()
|
||||
url = f'https://huggingface.co/{model}/tree/{branch}'
|
||||
if branch != 'main':
|
||||
output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
|
||||
else:
|
||||
@ -115,45 +157,11 @@ if __name__ == '__main__':
|
||||
if not output_folder.exists():
|
||||
output_folder.mkdir()
|
||||
|
||||
# Finding the relevant files to download
|
||||
page = requests.get(url)
|
||||
soup = BeautifulSoup(page.content, 'html.parser')
|
||||
links = soup.find_all('a')
|
||||
downloads = []
|
||||
classifications = []
|
||||
has_pytorch = False
|
||||
has_safetensors = False
|
||||
for link in links:
|
||||
href = link.get('href')[1:]
|
||||
if href.startswith(f'{model}/resolve/{branch}'):
|
||||
fname = Path(href).name
|
||||
is_pytorch = re.match("pytorch_model.*\.bin", fname)
|
||||
is_safetensors = re.match("model.*\.safetensors", fname)
|
||||
is_text = re.match(".*\.(txt|json)", fname)
|
||||
|
||||
if is_text or is_safetensors or is_pytorch:
|
||||
if is_text:
|
||||
downloads.append(f'https://huggingface.co/{href}')
|
||||
classifications.append('text')
|
||||
continue
|
||||
if not args.text_only:
|
||||
downloads.append(f'https://huggingface.co/{href}')
|
||||
if is_safetensors:
|
||||
has_safetensors = True
|
||||
classifications.append('safetensors')
|
||||
elif is_pytorch:
|
||||
has_pytorch = True
|
||||
classifications.append('pytorch')
|
||||
|
||||
# If both pytorch and safetensors are available, download safetensors only
|
||||
if has_pytorch and has_safetensors:
|
||||
for i in range(len(classifications)-1, -1, -1):
|
||||
if classifications[i] == 'pytorch':
|
||||
downloads.pop(i)
|
||||
links = get_download_links_from_huggingface(model, branch)
|
||||
|
||||
# Downloading the files
|
||||
print(f"Downloading the model to {output_folder}")
|
||||
pool = multiprocessing.Pool(processes=args.threads)
|
||||
results = pool.map(get_file, [[downloads[i], output_folder, i+1, len(downloads)] for i in range(len(downloads))])
|
||||
results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))])
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
@ -1,5 +1,4 @@
|
||||
accelerate==0.16.0
|
||||
beautifulsoup4
|
||||
bitsandbytes==0.37.0
|
||||
gradio==3.18.0
|
||||
numpy
|
||||
|
Loading…
Reference in New Issue
Block a user