''' Based on https://github.com/abetlen/llama-cpp-python Documentation: https://abetlen.github.io/llama-cpp-python/ ''' import multiprocessing from llama_cpp import Llama from modules import shared from modules.callbacks import Iteratorize class LlamaCppModel: def __init__(self): self.initialized = False @classmethod def from_pretrained(self, path): result = self() params = { 'model_path': str(path), 'n_ctx': 2048, 'seed': 0, 'n_threads': shared.args.threads or None } self.model = Llama(**params) # This is ugly, but the model and the tokenizer are the same object in this library. return result, result def encode(self, string): if type(string) is str: string = string.encode() return self.model.tokenize(string) def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None): if type(context) is str: context = context.encode() tokens = self.model.tokenize(context) output = b"" count = 0 for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty): text = self.model.detokenize([token]) output += text if callback: callback(text.decode()) count += 1 if count >= token_count or (token == self.model.token_eos()): break return output.decode() def generate_with_streaming(self, **kwargs): with Iteratorize(self.generate, kwargs, callback=None) as generator: reply = '' for token in generator: reply += token yield reply