import time from abc import abstractmethod from typing import List, Tuple import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import CLIPImageProcessor, CLIPVisionModel from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline from modules import shared from modules.logging_colors import logger from modules.text_generation import encode def expand2square(pil_img: Image.Image, background_color: Tuple[int]) -> Image.Image: width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result class LLaVA_v0_Pipeline(AbstractMultimodalPipeline): CLIP_REPO = "openai/clip-vit-large-patch14" def __init__(self, params: dict) -> None: super().__init__() self.clip_device = self._get_device("vision_device", params) self.clip_dtype = self._get_dtype("vision_bits", params) self.projector_device = self._get_device("projector_device", params) self.projector_dtype = self._get_dtype("projector_bits", params) self.image_processor, self.vision_tower, self.mm_projector = self._load_models() def _load_models(self): start_ts = time.time() logger.info(f"LLaVA - Loading CLIP from {self.CLIP_REPO} as {self.clip_dtype} on {self.clip_device}...") image_processor = CLIPImageProcessor.from_pretrained(self.CLIP_REPO, torch_dtype=self.clip_dtype) vision_tower = CLIPVisionModel.from_pretrained(self.CLIP_REPO, torch_dtype=self.clip_dtype).to(self.clip_device) logger.info(f"LLaVA - Loading projector from {self.llava_projector_repo()} as {self.projector_dtype} on {self.projector_device}...") projector_path = hf_hub_download(self.llava_projector_repo(), self.llava_projector_filename()) mm_projector = self.build_mm_projector() projector_data = torch.load(projector_path) projector_data = {k[19:]: v for k, v in projector_data.items() if k.startswith('model.mm_projector.')} mm_projector.load_state_dict(projector_data) mm_projector = mm_projector.to(self.projector_device) logger.info(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds") return image_processor, vision_tower, mm_projector def build_mm_projector(self) -> torch.nn.Module: projector_shape = self.llava_projector_shape() if len(projector_shape) == 2: return torch.nn.Linear(*projector_shape) else: modules = [] modules.append(torch.nn.Linear(projector_shape[0], projector_shape[1])) for i in range(2, len(projector_shape)): modules.append(torch.nn.GELU()) modules.append(torch.nn.Linear(projector_shape[i-1], projector_shape[i])) return torch.nn.Sequential(*modules) @staticmethod def image_start() -> str: return "" @staticmethod def image_end() -> str: return "" @staticmethod def num_image_embeds() -> int: return 256 @staticmethod def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor: for attr in ['', 'model', 'model.model', 'model.model.model']: tmp = getattr(shared.model, attr, None) if attr != '' else shared.model if tmp is not None and hasattr(tmp, 'embed_tokens'): func = tmp.embed_tokens break else: raise ValueError('The embed_tokens method has not been found for this loader.') return func(input_ids).to(shared.model.device, dtype=shared.model.dtype) @staticmethod def placeholder_embeddings() -> torch.Tensor: return LLaVA_v0_Pipeline.embed_tokens(encode(""*256, add_bos_token=False)[0]) def embed_images(self, images: List[Image.Image]) -> torch.Tensor: images = self.image_processor(images, return_tensors='pt')['pixel_values'] images = images.to(self.clip_device, dtype=self.clip_dtype) with torch.no_grad(): image_forward_outs = self.vision_tower(images, output_hidden_states=True) select_hidden_state_layer = -2 select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] image_features = select_hidden_state[:, 1:].to(self.projector_device, dtype=self.projector_dtype) image_features = self.mm_projector(image_features) return image_features.to(shared.model.device, dtype=shared.model.dtype) @staticmethod @abstractmethod def llava_projector_repo() -> str: pass @staticmethod @abstractmethod def llava_projector_filename() -> str: pass @staticmethod @abstractmethod def llava_projector_shape() -> Tuple[int, int]: pass class LLaVA_v0_13B_Pipeline(LLaVA_v0_Pipeline): def __init__(self, params: dict) -> None: super().__init__(params) @staticmethod def name() -> str: return "llava-13b" @staticmethod def placeholder_token_id() -> int: return 32000 @staticmethod def llava_projector_shape() -> Tuple[int, int]: return (1024, 5120) @staticmethod def llava_projector_filename() -> str: return "mm_projector.bin" @staticmethod def llava_projector_repo() -> str: return "liuhaotian/LLaVA-13b-delta-v0" class LLaVA_v0_7B_Pipeline(LLaVA_v0_Pipeline): def __init__(self, params: dict) -> None: super().__init__(params) @staticmethod def name() -> str: return "llava-7b" @staticmethod def placeholder_token_id() -> int: return 32001 @staticmethod def llava_projector_shape() -> Tuple[int, int]: return (1024, 4096) @staticmethod def llava_projector_filename() -> str: return "mm_projector.bin" @staticmethod def llava_projector_repo() -> str: return "liuhaotian/LLaVA-7b-delta-v0" class LLaVA_LLaMA_2_13B_Pipeline(LLaVA_v0_13B_Pipeline): def __init__(self, params: dict) -> None: super().__init__(params) @staticmethod def name() -> str: return "llava-llama-2-13b" @staticmethod def placeholder_token_id() -> int: return 0 @staticmethod def llava_projector_repo() -> str: return "liuhaotian/llava-llama-2-13b-chat-lightning-preview" @staticmethod def image_start() -> str: return "" @staticmethod def image_end() -> str: return "" @staticmethod def placeholder_embeddings() -> torch.Tensor: return LLaVA_v0_Pipeline.embed_tokens(encode(""*256, add_bos_token=False)[0]) class LLaVA_v1_5_13B_Pipeline(LLaVA_v0_13B_Pipeline): CLIP_REPO = "openai/clip-vit-large-patch14-336" def __init__(self, params: dict) -> None: super().__init__(params) @staticmethod def name() -> str: return "llava-v1.5-13b" @staticmethod def llava_projector_shape() -> Tuple[int, int]: return (1024, 5120, 5120) @staticmethod def placeholder_token_id() -> int: return 0 @staticmethod def llava_projector_repo() -> str: return "liuhaotian/llava-v1.5-13b" @staticmethod def image_start() -> str: return "" @staticmethod def image_end() -> str: return "" @staticmethod def num_image_embeds() -> int: return 576 def embed_images(self, images: List[Image.Image]) -> torch.Tensor: # pad it to square first images = [ expand2square(image, tuple(int(x*255) for x in self.image_processor.image_mean)) for image in images ] return super().embed_images(images) @staticmethod def placeholder_embeddings() -> torch.Tensor: return LLaVA_v0_Pipeline.embed_tokens(encode(""*576, add_bos_token=False)[0])