import gc import os import pprint import re import time import traceback from pathlib import Path import torch import transformers from accelerate import infer_auto_device_map, init_empty_weights from accelerate.utils import ( is_ccl_available, is_npu_available, is_xpu_available ) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig, GPTQConfig, is_torch_npu_available, is_torch_xpu_available ) import modules.shared as shared from modules.logging_colors import logger from modules.models_settings import get_model_metadata transformers.logging.set_verbosity_error() local_rank = None if shared.args.deepspeed: import deepspeed from transformers.deepspeed import ( HfDeepSpeedConfig, is_deepspeed_zero3_enabled ) from modules.deepspeed_parameters import generate_ds_config # Distributed setup local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) if is_xpu_available() and is_ccl_available(): torch.xpu.set_device(local_rank) deepspeed.init_distributed(backend="ccl") elif is_npu_available(): torch.npu.set_device(local_rank) deepspeed.init_distributed(dist_backend="hccl") else: torch.cuda.set_device(local_rank) deepspeed.init_distributed() ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration last_generation_time = time.time() def load_model(model_name, loader=None): logger.info(f"Loading \"{model_name}\"") t0 = time.time() shared.is_seq2seq = False shared.model_name = model_name load_func_map = { 'Transformers': huggingface_loader, 'llama.cpp': llamacpp_loader, 'llamacpp_HF': llamacpp_HF_loader, 'ExLlamav2': ExLlamav2_loader, 'ExLlamav2_HF': ExLlamav2_HF_loader, 'AutoGPTQ': AutoGPTQ_loader, 'HQQ': HQQ_loader, 'TensorRT-LLM': TensorRT_LLM_loader, } metadata = get_model_metadata(model_name) if loader is None: if shared.args.loader is not None: loader = shared.args.loader else: loader = metadata['loader'] if loader is None: logger.error('The path to the model does not exist. Exiting.') raise ValueError shared.args.loader = loader clear_torch_cache() output = load_func_map[loader](model_name) if type(output) is tuple: model, tokenizer = output else: model = output if model is None: return None, None else: tokenizer = load_tokenizer(model_name) shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings}) if loader.lower().startswith('exllama') or loader.lower().startswith('tensorrt'): shared.settings['truncation_length'] = shared.args.max_seq_len elif loader in ['llama.cpp', 'llamacpp_HF']: shared.settings['truncation_length'] = shared.args.n_ctx logger.info(f"Loaded \"{model_name}\" in {(time.time()-t0):.2f} seconds.") logger.info(f"LOADER: \"{loader}\"") logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}") logger.info(f"INSTRUCTION TEMPLATE: \"{metadata['instruction_template']}\"") return model, tokenizer def load_tokenizer(model_name, tokenizer_dir=None): if tokenizer_dir: path_to_model = Path(tokenizer_dir) else: path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") tokenizer = None if path_to_model.exists(): if shared.args.no_use_fast: logger.info('Loading the tokenizer with use_fast=False.') tokenizer = AutoTokenizer.from_pretrained( path_to_model, trust_remote_code=shared.args.trust_remote_code, use_fast=not shared.args.no_use_fast ) return tokenizer def huggingface_loader(model_name): path_to_model = Path(f'{shared.args.model_dir}/{model_name}') params = { 'low_cpu_mem_usage': True, 'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16, } if shared.args.trust_remote_code: params['trust_remote_code'] = True if shared.args.use_flash_attention_2: params['use_flash_attention_2'] = True if shared.args.force_safetensors: params['force_safetensors'] = True if shared.args.use_eager_attention: params['attn_implementation'] = 'eager' config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) if 'chatglm' in model_name.lower(): LoaderClass = AutoModel else: if config.to_dict().get('is_encoder_decoder', False): LoaderClass = AutoModelForSeq2SeqLM shared.is_seq2seq = True else: LoaderClass = AutoModelForCausalLM # Load the model without any special settings if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama, shared.args.disable_exllamav2]): logger.info("TRANSFORMERS_PARAMS=") pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params) print() model = LoaderClass.from_pretrained(path_to_model, **params) if not (hasattr(model, 'is_loaded_in_4bit') and model.is_loaded_in_4bit): device = get_device() if device: model = model.to(device) # DeepSpeed ZeRO-3 elif shared.args.deepspeed: model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype'], trust_remote_code=params.get('trust_remote_code')) model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] model.module.eval() # Inference logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}') # Load with quantization and/or offloading else: if not any((shared.args.cpu, torch.cuda.is_available(), is_xpu_available(), torch.backends.mps.is_available())): logger.warning('torch.cuda.is_available() and is_xpu_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.') shared.args.cpu = True if shared.args.cpu: params['torch_dtype'] = torch.float32 else: params['device_map'] = 'auto' if x := get_max_memory_dict(): params['max_memory'] = x if shared.args.load_in_4bit: # See https://github.com/huggingface/transformers/pull/23479/files # and https://huggingface.co/blog/4bit-transformers-bitsandbytes quantization_config_params = { 'load_in_4bit': True, 'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None, 'bnb_4bit_quant_type': shared.args.quant_type, 'bnb_4bit_use_double_quant': shared.args.use_double_quant, 'llm_int8_enable_fp32_cpu_offload': True } params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params) elif shared.args.load_in_8bit: if any((shared.args.auto_devices, shared.args.gpu_memory)): params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) else: params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) if params.get('max_memory') is not None: with init_empty_weights(): model = LoaderClass.from_config(config, trust_remote_code=params.get('trust_remote_code')) model.tie_weights() params['device_map'] = infer_auto_device_map( model, dtype=torch.int8, max_memory=params.get('max_memory'), no_split_module_classes=model._no_split_modules ) if shared.args.disk: params['offload_folder'] = shared.args.disk_cache_dir if shared.args.disable_exllama or shared.args.disable_exllamav2: try: gptq_config = GPTQConfig( bits=config.quantization_config.get('bits', 4), disable_exllama=shared.args.disable_exllama, disable_exllamav2=shared.args.disable_exllamav2, ) params['quantization_config'] = gptq_config logger.info(f'Loading with disable_exllama={shared.args.disable_exllama} and disable_exllamav2={shared.args.disable_exllamav2}.') except: exc = traceback.format_exc() logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?') print(exc) if shared.args.compress_pos_emb > 1: params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb} elif shared.args.alpha_value > 1: params['rope_scaling'] = {'type': 'dynamic', 'factor': shared.args.alpha_value} logger.info("TRANSFORMERS_PARAMS=") pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params) print() model = LoaderClass.from_pretrained(path_to_model, **params) return model def llamacpp_loader(model_name): from modules.llamacpp_model import LlamaCppModel path = Path(f'{shared.args.model_dir}/{model_name}') if path.is_file(): model_file = path else: model_file = sorted(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0] logger.info(f"llama.cpp weights detected: \"{model_file}\"") model, tokenizer = LlamaCppModel.from_pretrained(model_file) return model, tokenizer def llamacpp_HF_loader(model_name): from modules.llamacpp_hf import LlamacppHF if shared.args.tokenizer_dir: logger.info(f'Using tokenizer from: \"{shared.args.tokenizer_dir}\"') else: path = Path(f'{shared.args.model_dir}/{model_name}') # Check if a HF tokenizer is available for the model if all((path / file).exists() for file in ['tokenizer_config.json']): logger.info(f'Using tokenizer from: \"{path}\"') else: logger.error("Could not load the model because a tokenizer in Transformers format was not found.") return None, None model = LlamacppHF.from_pretrained(model_name) if shared.args.tokenizer_dir: tokenizer = load_tokenizer(model_name, tokenizer_dir=shared.args.tokenizer_dir) return model, tokenizer else: return model def ExLlamav2_loader(model_name): from modules.exllamav2 import Exllamav2Model model, tokenizer = Exllamav2Model.from_pretrained(model_name) return model, tokenizer def ExLlamav2_HF_loader(model_name): from modules.exllamav2_hf import Exllamav2HF return Exllamav2HF.from_pretrained(model_name) def AutoGPTQ_loader(model_name): try: import modules.AutoGPTQ_loader except ModuleNotFoundError: raise ModuleNotFoundError("Failed to import 'autogptq'. Please install it manually following the instructions in the AutoGPTQ GitHub repository.") return modules.AutoGPTQ_loader.load_quantized(model_name) def HQQ_loader(model_name): try: from hqq.core.quantize import HQQBackend, HQQLinear from hqq.models.hf.base import AutoHQQHFModel except ModuleNotFoundError: raise ModuleNotFoundError("Failed to import 'hqq'. Please install it manually following the instructions in the HQQ GitHub repository.") logger.info(f"Loading HQQ model with backend: \"{shared.args.hqq_backend}\"") model_dir = Path(f'{shared.args.model_dir}/{model_name}') model = AutoHQQHFModel.from_quantized(str(model_dir)) HQQLinear.set_backend(getattr(HQQBackend, shared.args.hqq_backend)) return model def TensorRT_LLM_loader(model_name): try: from modules.tensorrt_llm import TensorRTLLMModel except ModuleNotFoundError: raise ModuleNotFoundError("Failed to import 'tensorrt_llm'. Please install it manually following the instructions in the TensorRT-LLM GitHub repository.") model = TensorRTLLMModel.from_pretrained(model_name) return model def get_max_memory_dict(): max_memory = {} max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' if shared.args.gpu_memory: memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) for i in range(len(memory_map)): max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory # If --auto-devices is provided standalone, try to get a reasonable value # for the maximum memory of device :0 elif shared.args.auto_devices: if is_xpu_available(): total_mem = (torch.xpu.get_device_properties(0).total_memory / (1024 * 1024)) else: total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) suggestion = round((total_mem - 1000) / 1000) * 1000 if total_mem - suggestion < 800: suggestion -= 1000 suggestion = int(round(suggestion / 1000)) logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") max_memory[0] = f'{suggestion}GiB' max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory return max_memory if len(max_memory) > 0 else None def get_device(): if torch.cuda.is_available(): return torch.device('cuda') elif shared.args.deepspeed: import deepspeed return deepspeed.get_accelerator().current_device_name() elif torch.backends.mps.is_available(): return torch.device('mps') elif is_torch_xpu_available(): return torch.device('xpu:0') elif is_torch_npu_available(): return torch.device('npu:0') else: return None def clear_torch_cache(): gc.collect() if not shared.args.cpu: if torch.cuda.is_available(): torch.cuda.empty_cache() elif is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() elif torch.backends.mps.is_available(): if hasattr(torch.backends.mps, 'empty_cache'): torch.backends.mps.empty_cache() def unload_model(keep_model_name=False): shared.model = shared.tokenizer = None shared.lora_names = [] shared.model_dirty_from_training = False clear_torch_cache() if not keep_model_name: shared.model_name = 'None' def reload_model(): unload_model() shared.model, shared.tokenizer = load_model(shared.model_name) def unload_model_if_idle(): global last_generation_time logger.info(f"Setting a timeout of {shared.args.idle_timeout} minutes to unload the model in case of inactivity.") while True: shared.generation_lock.acquire() try: if time.time() - last_generation_time > shared.args.idle_timeout * 60: if shared.model is not None: logger.info("Unloading the model for inactivity.") unload_model(keep_model_name=True) finally: shared.generation_lock.release() time.sleep(60)