from pathlib import Path import torch from peft import PeftModel import modules.shared as shared from modules.logging_colors import logger from modules.models import reload_model try: from auto_gptq import get_gptq_peft_model from auto_gptq.utils.peft_utils import GPTQLoraConfig has_auto_gptq_peft = True except: has_auto_gptq_peft = False def add_lora_to_model(lora_names): prior_set = set(shared.lora_names) added_set = set(lora_names) - prior_set removed_set = prior_set - set(lora_names) shared.lora_names = list(lora_names) is_autogptq = 'GPTQForCausalLM' in shared.model.__class__.__name__ # AutoGPTQ case. It doesn't use the peft functions. # Copied from https://github.com/Ph0rk0z/text-generation-webui-testing if is_autogptq: if not has_auto_gptq_peft: logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.") return if len(prior_set) > 0: reload_model() if len(shared.lora_names) == 0: return else: if len(shared.lora_names) > 1: logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded') peft_config = GPTQLoraConfig( inference_mode=True, ) lora_path = Path(f"{shared.args.lora_dir}/{shared.lora_names[0]}") logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]]))) shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path) return # Transformers case else: # If no LoRA needs to be added or removed, exit if len(added_set) == 0 and len(removed_set) == 0: return # Add a LoRA when another LoRA is already present if len(removed_set) == 0 and len(prior_set) > 0: logger.info(f"Adding the LoRA(s) named {added_set} to the model...") for lora in added_set: shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) return # If any LoRA needs to be removed, start over if len(removed_set) > 0: shared.model.disable_adapter() shared.model = shared.model.base_model.model if len(lora_names) > 0: logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names))) params = {} if not shared.args.cpu: params['dtype'] = shared.model.dtype if hasattr(shared.model, "hf_device_map"): params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()} elif shared.args.load_in_8bit: params['device_map'] = {'': 0} shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), **params) for lora in lora_names[1:]: shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) if not shared.args.load_in_8bit and not shared.args.cpu: shared.model.half() if not hasattr(shared.model, "hf_device_map"): if torch.has_mps: device = torch.device('mps') shared.model = shared.model.to(device) else: shared.model = shared.model.cuda()