import sys from pathlib import Path from modules import shared from modules.logging_colors import logger sys.path.insert(0, str(Path("repositories/exllama"))) from repositories.exllama.generator import ExLlamaGenerator from repositories.exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig from repositories.exllama.tokenizer import ExLlamaTokenizer class ExllamaModel: def __init__(self): pass @classmethod def from_pretrained(self, path_to_model): path_to_model = Path("models") / Path(path_to_model) tokenizer_model_path = path_to_model / "tokenizer.model" model_config_path = path_to_model / "config.json" # Find the model checkpoint model_path = None for ext in ['.safetensors', '.pt', '.bin']: found = list(path_to_model.glob(f"*{ext}")) if len(found) > 0: if len(found) > 1: logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') model_path = found[-1] break config = ExLlamaConfig(str(model_config_path)) config.model_path = str(model_path) if shared.args.gpu_split: config.set_auto_map(shared.args.gpu_split) config.gpu_peer_fix = True model = ExLlama(config) tokenizer = ExLlamaTokenizer(str(tokenizer_model_path)) cache = ExLlamaCache(model) result = self() result.config = config result.model = model result.cache = cache result.tokenizer = tokenizer return result, result def generate(self, prompt, state, callback=None): generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) generator.settings.temperature = state['temperature'] generator.settings.top_p = state['top_p'] generator.settings.top_k = state['top_k'] generator.settings.typical = state['typical_p'] generator.settings.token_repetition_penalty_max = state['repetition_penalty'] if state['ban_eos_token']: generator.disallow_tokens([self.tokenizer.eos_token_id]) text = generator.generate_simple(prompt, max_new_tokens=state['max_new_tokens']) return text def generate_with_streaming(self, prompt, state, callback=None): generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) generator.settings.temperature = state['temperature'] generator.settings.top_p = state['top_p'] generator.settings.top_k = state['top_k'] generator.settings.typical = state['typical_p'] generator.settings.token_repetition_penalty_max = state['repetition_penalty'] if state['ban_eos_token']: generator.disallow_tokens([self.tokenizer.eos_token_id]) generator.end_beam_search() ids = generator.tokenizer.encode(prompt) generator.gen_begin(ids) initial_len = generator.sequence[0].shape[0] for i in range(state['max_new_tokens']): token = generator.gen_single_token() yield (generator.tokenizer.decode(generator.sequence[0][initial_len:])) if token.item() == generator.tokenizer.eos_token_id or shared.stop_everything: break def encode(self, string, **kwargs): return self.tokenizer.encode(string)