''' Downloads models from Hugging Face to models/username_modelname. Example: python download-model.py facebook/opt-1.3b ''' import argparse import base64 import datetime import hashlib import json import os import re import sys from pathlib import Path import requests import tqdm from tqdm.contrib.concurrent import thread_map class ModelDownloader: def __init__(self): self.s = requests.Session() if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None: self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS')) def sanitize_model_and_branch_names(self, model, branch): if model[-1] == '/': model = model[:-1] if branch is None: branch = "main" else: pattern = re.compile(r"^[a-zA-Z0-9._-]+$") if not pattern.match(branch): raise ValueError( "Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") return model, branch def get_download_links_from_huggingface(self, model, branch, text_only=False): base = "https://huggingface.co" page = f"/api/models/{model}/tree/{branch}" cursor = b"" links = [] sha256 = [] classifications = [] has_pytorch = False has_pt = False # has_ggml = False has_safetensors = False is_lora = False while True: url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") r = self.s.get(url, timeout=20) r.raise_for_status() content = r.content dict = json.loads(content) if len(dict) == 0: break for i in range(len(dict)): fname = dict[i]['path'] if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): is_lora = True is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname) is_safetensors = re.match(".*\.safetensors", fname) is_pt = re.match(".*\.pt", fname) is_ggml = re.match(".*ggml.*\.bin", fname) is_tokenizer = re.match("(tokenizer|ice).*\.model", fname) is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)): if 'lfs' in dict[i]: sha256.append([fname, dict[i]['lfs']['oid']]) if is_text: links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") classifications.append('text') continue if not text_only: links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") if is_safetensors: has_safetensors = True classifications.append('safetensors') elif is_pytorch: has_pytorch = True classifications.append('pytorch') elif is_pt: has_pt = True classifications.append('pt') elif is_ggml: # has_ggml = True classifications.append('ggml') cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' cursor = base64.b64encode(cursor) cursor = cursor.replace(b'=', b'%3D') # If both pytorch and safetensors are available, download safetensors only if (has_pytorch or has_pt) and has_safetensors: for i in range(len(classifications) - 1, -1, -1): if classifications[i] in ['pytorch', 'pt']: links.pop(i) return links, sha256, is_lora def get_output_folder(self, model, branch, is_lora, base_folder=None): if base_folder is None: base_folder = 'models' if not is_lora else 'loras' output_folder = f"{'_'.join(model.split('/')[-2:])}" if branch != 'main': output_folder += f'_{branch}' output_folder = Path(base_folder) / output_folder return output_folder def get_single_file(self, url, output_folder, start_from_scratch=False): filename = Path(url.rsplit('/', 1)[1]) output_path = output_folder / filename headers = {} mode = 'wb' if output_path.exists() and not start_from_scratch: # Check if the file has already been downloaded completely r = self.s.get(url, stream=True, timeout=20) total_size = int(r.headers.get('content-length', 0)) if output_path.stat().st_size >= total_size: return # Otherwise, resume the download from where it left off headers = {'Range': f'bytes={output_path.stat().st_size}-'} mode = 'ab' with self.s.get(url, stream=True, headers=headers, timeout=20) as r: r.raise_for_status() # Do not continue the download if the request was unsuccessful total_size = int(r.headers.get('content-length', 0)) block_size = 1024 * 1024 # 1MB with open(output_path, mode) as f: with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t: count = 0 for data in r.iter_content(block_size): t.update(len(data)) f.write(data) if self.progress_bar is not None: count += len(data) self.progress_bar(float(count) / float(total_size), f"Downloading {filename}") def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=1): thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True) def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=1): self.progress_bar = progress_bar # Creating the folder and writing the metadata output_folder.mkdir(parents=True, exist_ok=True) metadata = f'url: https://huggingface.co/{model}\n' \ f'branch: {branch}\n' \ f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n' sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256]) if sha256_str: metadata += f'sha256sum:\n{sha256_str}' metadata += '\n' (output_folder / 'huggingface-metadata.txt').write_text(metadata) # Downloading the files print(f"Downloading the model to {output_folder}") self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads) def check_model_files(self, model, branch, links, sha256, output_folder): # Validate the checksums validated = True for i in range(len(sha256)): fpath = (output_folder / sha256[i][0]) if not fpath.exists(): print(f"The following file is missing: {fpath}") validated = False continue with open(output_folder / sha256[i][0], "rb") as f: bytes = f.read() file_hash = hashlib.sha256(bytes).hexdigest() if file_hash != sha256[i][1]: print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') validated = False else: print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') if validated: print('[+] Validated checksums of all model files!') else: print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('MODEL', type=str, default=None, nargs='?') parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') args = parser.parse_args() branch = args.branch model = args.MODEL downloader = ModelDownloader() # Cleaning up the model/branch names try: model, branch = downloader.sanitize_model_and_branch_names(model, branch) except ValueError as err_branch: print(f"Error: {err_branch}") sys.exit() # Getting the download links from Hugging Face links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only) # Getting the output folder output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=args.output) if args.check: # Check previously downloaded files downloader.check_model_files(model, branch, links, sha256, output_folder) else: # Download files downloader.download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)