from pathlib import Path import gradio as gr from modules import loaders, presets, shared, ui, ui_chat, utils from modules.utils import gradio def create_ui(default_preset): mu = shared.args.multi_user generate_params = presets.load_preset(default_preset) with gr.Tab("Parameters", elem_id="parameters"): with gr.Tab("Generation"): with gr.Row(): with gr.Column(): with gr.Row(): shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset, label='Preset', elem_classes='slim-dropdown') ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button', interactive=not mu) shared.gradio['save_preset'] = gr.Button('💾', elem_classes='refresh-button', interactive=not mu) shared.gradio['delete_preset'] = gr.Button('🗑️', elem_classes='refresh-button', interactive=not mu) with gr.Column(): shared.gradio['filter_by_loader'] = gr.Dropdown(label="Filter by loader", choices=["All"] + list(loaders.loaders_and_params.keys()), value="All", elem_classes='slim-dropdown') with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens']) shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature') shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p') shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k') shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty') shared.gradio['presence_penalty'] = gr.Slider(0, 4, value=generate_params['presence_penalty'], step=0.05, label='presence_penalty') shared.gradio['frequency_penalty'] = gr.Slider(0, 2, value=generate_params['frequency_penalty'], step=0.05, label='frequency_penalty') shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range') shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p') shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs') shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a') shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff') shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff') with gr.Column(): shared.gradio['guidance_scale'] = gr.Slider(-0.5, 2.5, step=0.05, value=generate_params['guidance_scale'], label='guidance_scale', info='For CFG. 1.5 is a good value.') shared.gradio['negative_prompt'] = gr.Textbox(value=shared.settings['negative_prompt'], label='Negative prompt', lines=3, elem_classes=['add_scrollbar']) shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.') shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.') shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau') shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta') shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample') shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)') with gr.Accordion('Other parameters', open=False): shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty') shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size') shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length') shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams', info='For Beam Search, along with length_penalty and early_stopping.') shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty') shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping') gr.Markdown("[Learn more](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Generation-Parameters.md)") with gr.Column(): with gr.Row(): with gr.Column(): shared.gradio['truncation_length'] = gr.Slider(value=get_truncation_length(), minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.') shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum number of tokens/second', info='To make text readable in real time.') shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"') shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Custom token bans', info='Specific token IDs to ban from generating, comma-separated. The IDs can be found in the Default or Notebook tab.') with gr.Column(): shared.gradio['auto_max_new_tokens'] = gr.Checkbox(value=shared.settings['auto_max_new_tokens'], label='auto_max_new_tokens', info='Expand max_new_tokens to the available context length.') shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.') shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.') shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.') shared.gradio['stream'] = gr.Checkbox(value=shared.settings['stream'], label='Activate text streaming') with gr.Row() as shared.gradio['grammar_file_row']: shared.gradio['grammar_file'] = gr.Dropdown(value='None', choices=utils.get_available_grammars(), label='Load grammar from file (.gbnf)', elem_classes='slim-dropdown') ui.create_refresh_button(shared.gradio['grammar_file'], lambda: None, lambda: {'choices': utils.get_available_grammars()}, 'refresh-button', interactive=not mu) shared.gradio['save_grammar'] = gr.Button('💾', elem_classes='refresh-button', interactive=not mu) shared.gradio['delete_grammar'] = gr.Button('🗑️ ', elem_classes='refresh-button', interactive=not mu) shared.gradio['grammar_string'] = gr.Textbox(value='', label='Grammar', lines=16, elem_classes=['add_scrollbar', 'monospace']) ui_chat.create_chat_settings_ui() def create_event_handlers(): shared.gradio['filter_by_loader'].change(loaders.blacklist_samplers, gradio('filter_by_loader'), gradio(loaders.list_all_samplers()), show_progress=False) shared.gradio['preset_menu'].change(presets.load_preset_for_ui, gradio('preset_menu', 'interface_state'), gradio('interface_state') + gradio(presets.presets_params())) shared.gradio['grammar_file'].change(load_grammar, gradio('grammar_file'), gradio('grammar_string')) def get_truncation_length(): if 'max_seq_len' in shared.provided_arguments: return shared.args.max_seq_len elif 'n_ctx' in shared.provided_arguments: return shared.args.n_ctx else: return shared.settings['truncation_length'] def load_grammar(name): p = Path(f'grammars/{name}') if p.exists(): return open(p, 'r').read() else: return ''