import torch from modules import shared def get_next_logits(prompt): tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda() output = shared.model(input_ids=tokens) scores = output['logits'][-1][-1] probs = torch.softmax(scores, dim=-1, dtype=torch.float) topk_values, topk_indices = torch.topk(probs, k=20, largest=True, sorted=True) topk_values = [f"{float(i):.5f}" % i for i in topk_values] output = '' for row in list(zip(topk_values, shared.tokenizer.convert_ids_to_tokens(topk_indices))): output += f"{row[0]} {row[1]}\n" return output