# Text generation web UI A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA. Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. [[Try it on Google Colab]](https://colab.research.google.com/github/oobabooga/AI-Notebooks/blob/main/Colab-TextGen-GPU.ipynb) |![Image1](https://github.com/oobabooga/screenshots/raw/main/qa.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/cai3.png) | |:---:|:---:| |![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png) | ![Image4](https://github.com/oobabooga/screenshots/raw/main/galactica.png) | ## Features * Dropdown menu for switching between models * Notebook mode that resembles OpenAI's playground * Chat mode for conversation and role playing * Nice HTML output for GPT-4chan * Markdown output for [GALACTICA](https://github.com/paperswithcode/galai), including LaTeX rendering * [Custom chat characters](https://github.com/oobabooga/text-generation-webui/wiki/Custom-chat-characters) * Advanced chat features (send images, get audio responses with TTS) * Very efficient text streaming * Parameter presets * 8-bit mode * Layers splitting across GPU(s), CPU, and disk * CPU mode * [FlexGen](https://github.com/oobabooga/text-generation-webui/wiki/FlexGen) * [DeepSpeed ZeRO-3](https://github.com/oobabooga/text-generation-webui/wiki/DeepSpeed) * API [with](https://github.com/oobabooga/text-generation-webui/blob/main/api-example-streaming.py) streaming and [without](https://github.com/oobabooga/text-generation-webui/blob/main/api-example.py) streaming * [LLaMA model, including 4-bit GPTQ](https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model) * [llama.cpp](https://github.com/oobabooga/text-generation-webui/wiki/llama.cpp-models) **\*NEW!\*** * [RWKV model](https://github.com/oobabooga/text-generation-webui/wiki/RWKV-model) * [LoRa (loading and training)](https://github.com/oobabooga/text-generation-webui/wiki/Using-LoRAs) * Softprompts * [Extensions](https://github.com/oobabooga/text-generation-webui/wiki/Extensions) * [Google Colab](https://github.com/oobabooga/text-generation-webui/wiki/Running-on-Colab) ## Installation ### One-click installers [oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga-windows.zip) Just download the zip above, extract it, and double click on "install". The web UI and all its dependencies will be installed in the same folder. * To download a model, double click on "download-model" * To start the web UI, double click on "start-webui" Source codes: https://github.com/oobabooga/one-click-installers > **Note** > > Thanks to [@jllllll](https://github.com/jllllll) and [@ClayShoaf](https://github.com/ClayShoaf), the Windows 1-click installer now sets up 8-bit and 4-bit requirements out of the box. No additional installation steps are necessary. > **Note** > > There is no need to run the installer as admin. ### Manual installation using Conda Recommended if you have some experience with the command-line. On Windows, I additionally recommend carrying out the installation on WSL instead of the base system: [WSL installation guide](https://github.com/oobabooga/text-generation-webui/wiki/WSL-installation-guide). 0. Install Conda https://docs.conda.io/en/latest/miniconda.html On Linux or WSL, it can be automatically installed with these two commands: ``` curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" bash Miniconda3.sh ``` Source: https://educe-ubc.github.io/conda.html 1. Create a new conda environment ``` conda create -n textgen python=3.10.9 conda activate textgen ``` 2. Install Pytorch | System | GPU | Command | |--------|---------|---------| | Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` | | Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` | | MacOS + MPS (untested) | Any | `pip3 install torch torchvision torchaudio` | The up to date commands can be found here: https://pytorch.org/get-started/locally/. MacOS users, refer to the comments here: https://github.com/oobabooga/text-generation-webui/pull/393 3. Install the web UI ``` git clone https://github.com/oobabooga/text-generation-webui cd text-generation-webui pip install -r requirements.txt ``` > **Note** > > For bitsandbytes and `--load-in-8bit` to work on Linux/WSL, this dirty fix is currently necessary: https://github.com/oobabooga/text-generation-webui/issues/400#issuecomment-1474876859 ### Alternative: manual Windows installation As an alternative to the recommended WSL method, you can install the web UI natively on Windows using this guide. It will be a lot harder and the performance may be slower: [Windows installation guide](https://github.com/oobabooga/text-generation-webui/wiki/Windows-installation-guide). ### Alternative: Docker https://github.com/oobabooga/text-generation-webui/issues/174, https://github.com/oobabooga/text-generation-webui/issues/87 ## Downloading models Models should be placed inside the `models` folder. [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads) is the main place to download models. These are some examples: * [Pythia](https://huggingface.co/models?sort=downloads&search=eleutherai%2Fpythia+deduped) * [OPT](https://huggingface.co/models?search=facebook/opt) * [GALACTICA](https://huggingface.co/models?search=facebook/galactica) * [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main) You can automatically download a model from HF using the script `download-model.py`: python download-model.py organization/model For example: python download-model.py facebook/opt-1.3b If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary. #### GPT-4chan [GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: * Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) * Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. After downloading the model, follow these steps: 1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. 2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). 3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): ``` python download-model.py EleutherAI/gpt-j-6B --text-only ``` ## Starting the web UI conda activate textgen cd text-generation-webui python server.py Then browse to `http://localhost:7860/?__theme=dark` Optionally, you can use the following command-line flags: #### Basic settings | Flag | Description | |------------------|-------------| | `-h`, `--help` | show this help message and exit | | `--notebook` | Launch the web UI in notebook mode, where the output is written to the same text box as the input. | | `--chat` | Launch the web UI in chat mode.| | `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. | | `--model MODEL` | Name of the model to load by default. | | `--lora LORA` | Name of the LoRA to apply to the model by default. | | `--model-dir MODEL_DIR` | Path to directory with all the models | | `--lora-dir LORA_DIR` | Path to directory with all the loras | | `--no-stream` | Don't stream the text output in real time. | | `--settings SETTINGS_FILE` | Load the default interface settings from this json file. See `settings-template.json` for an example. If you create a file called `settings.json`, this file will be loaded by default without the need to use the `--settings` flag.| | `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | | `--verbose` | Print the prompts to the terminal. | #### Accelerate/transformers | Flag | Description | |------------------|-------------| | `--cpu` | Use the CPU to generate text.| | `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.| | `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maxmimum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. | | `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.| | `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | | `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. | | `--load-in-8bit` | Load the model with 8-bit precision.| | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. | #### llama.cpp | Flag | Description | |------------------|-------------| | `--threads` | Number of threads to use in llama.cpp. | #### GPTQ | Flag | Description | |------------------|-------------| | `--wbits WBITS` | GPTQ: Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | | `--model_type MODEL_TYPE` | GPTQ: Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | | `--groupsize GROUPSIZE` | GPTQ: Group size. | | `--pre_layer PRE_LAYER` | GPTQ: The number of layers to preload. | #### FlexGen | Flag | Description | |------------------|-------------| | `--flexgen` | Enable the use of FlexGen offloading. | | `--percent PERCENT [PERCENT ...]` | FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0). | | `--compress-weight` | FlexGen: Whether to compress weight (default: False).| | `--pin-weight [PIN_WEIGHT]` | FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%). | #### DeepSpeed | Flag | Description | |------------------|-------------| | `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | | `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | | `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | #### RWKV | Flag | Description | |------------------|-------------| | `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | | `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | #### Gradio | Flag | Description | |------------------|-------------| | `--listen` | Make the web UI reachable from your local network. | | `--listen-port LISTEN_PORT` | The listening port that the server will use. | | `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | | `--auto-launch` | Open the web UI in the default browser upon launch. | | `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" | Out of memory errors? [Check the low VRAM guide](https://github.com/oobabooga/text-generation-webui/wiki/Low-VRAM-guide). ## Presets Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup. By default, 10 presets by NovelAI and KoboldAI are included. These were selected out of a sample of 43 presets after applying a K-Means clustering algorithm and selecting the elements closest to the average of each cluster. [Visualization](https://user-images.githubusercontent.com/112222186/228956352-1addbdb9-2456-465a-b51d-089f462cd385.png) ## System requirements Check the [wiki](https://github.com/oobabooga/text-generation-webui/wiki/System-requirements) for some examples of VRAM and RAM usage in both GPU and CPU mode. ## Contributing Pull requests, suggestions, and issue reports are welcome. Before reporting a bug, make sure that you have: 1. Created a conda environment and installed the dependencies exactly as in the *Installation* section above. 2. [Searched](https://github.com/oobabooga/text-generation-webui/issues) to see if an issue already exists for the issue you encountered. ## Credits - Gradio dropdown menu refresh button, code for reloading the interface: https://github.com/AUTOMATIC1111/stable-diffusion-webui - Verbose preset: Anonymous 4chan user. - NovelAI and KoboldAI presets: https://github.com/KoboldAI/KoboldAI-Client/wiki/Settings-Presets - Code for early stopping in chat mode, code for some of the sliders: https://github.com/PygmalionAI/gradio-ui/