''' Downloads models from Hugging Face to models/model-name. Example: python download-model.py facebook/opt-1.3b ''' import argparse import base64 import datetime import hashlib import json import re import sys from pathlib import Path import requests import tqdm from tqdm.contrib.concurrent import thread_map def select_model_from_default_options(): models = { "OPT 6.7B": ("facebook", "opt-6.7b", "main"), "OPT 2.7B": ("facebook", "opt-2.7b", "main"), "OPT 1.3B": ("facebook", "opt-1.3b", "main"), "OPT 350M": ("facebook", "opt-350m", "main"), "GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"), "GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"), "GALACTICA 125M": ("facebook", "galactica-125m", "main"), "Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"), "Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"), "Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"), "Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"), } choices = {} print("Select the model that you want to download:\n") for i, name in enumerate(models): char = chr(ord('A') + i) choices[char] = name print(f"{char}) {name}") char_hugging = chr(ord('A') + len(models)) print(f"{char_hugging}) Manually specify a Hugging Face model") char_exit = chr(ord('A') + len(models) + 1) print(f"{char_exit}) Do not download a model") print() print("Input> ", end='') choice = input()[0].strip().upper() if choice == char_exit: exit() elif choice == char_hugging: print("""\nType the name of your desired Hugging Face model in the format organization/name. Examples: facebook/opt-1.3b EleutherAI/pythia-1.4b-deduped """) print("Input> ", end='') model = input() branch = "main" else: arr = models[choices[choice]] model = f"{arr[0]}/{arr[1]}" branch = arr[2] return model, branch def sanitize_model_and_branch_names(model, branch): if model[-1] == '/': model = model[:-1] if branch is None: branch = "main" else: pattern = re.compile(r"^[a-zA-Z0-9._-]+$") if not pattern.match(branch): raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") return model, branch def get_download_links_from_huggingface(model, branch, text_only=False): base = "https://huggingface.co" page = f"/api/models/{model}/tree/{branch}" cursor = b"" links = [] sha256 = [] classifications = [] has_pytorch = False has_pt = False has_ggml = False has_safetensors = False is_lora = False while True: url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") r = requests.get(url, timeout=10) r.raise_for_status() content = r.content dict = json.loads(content) if len(dict) == 0: break for i in range(len(dict)): fname = dict[i]['path'] if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): is_lora = True is_pytorch = re.match("(pytorch|adapter|gptq)_model.*\.bin", fname) is_safetensors = re.match(".*\.safetensors", fname) is_pt = re.match(".*\.pt", fname) is_ggml = re.match(".*ggml.*\.bin", fname) is_tokenizer = re.match("(tokenizer|ice).*\.model", fname) is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)): if 'lfs' in dict[i]: sha256.append([fname, dict[i]['lfs']['oid']]) if is_text: links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") classifications.append('text') continue if not text_only: links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") if is_safetensors: has_safetensors = True classifications.append('safetensors') elif is_pytorch: has_pytorch = True classifications.append('pytorch') elif is_pt: has_pt = True classifications.append('pt') elif is_ggml: has_ggml = True classifications.append('ggml') cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' cursor = base64.b64encode(cursor) cursor = cursor.replace(b'=', b'%3D') # If both pytorch and safetensors are available, download safetensors only if (has_pytorch or has_pt) and has_safetensors: for i in range(len(classifications) - 1, -1, -1): if classifications[i] in ['pytorch', 'pt']: links.pop(i) return links, sha256, is_lora def get_output_folder(model, branch, is_lora, base_folder=None): if base_folder is None: base_folder = 'models' if not is_lora else 'loras' output_folder = f"{'_'.join(model.split('/')[-2:])}" if branch != 'main': output_folder += f'_{branch}' output_folder = Path(base_folder) / output_folder return output_folder def get_single_file(url, output_folder, start_from_scratch=False): filename = Path(url.rsplit('/', 1)[1]) output_path = output_folder / filename if output_path.exists() and not start_from_scratch: # Check if the file has already been downloaded completely r = requests.get(url, stream=True, timeout=10) total_size = int(r.headers.get('content-length', 0)) if output_path.stat().st_size >= total_size: return # Otherwise, resume the download from where it left off headers = {'Range': f'bytes={output_path.stat().st_size}-'} mode = 'ab' else: headers = {} mode = 'wb' r = requests.get(url, stream=True, headers=headers, timeout=10) with open(output_path, mode) as f: total_size = int(r.headers.get('content-length', 0)) block_size = 1024 with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t: for data in r.iter_content(block_size): t.update(len(data)) f.write(data) def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1): thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True) def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1): # Creating the folder and writing the metadata if not output_folder.exists(): output_folder.mkdir() with open(output_folder / 'huggingface-metadata.txt', 'w') as f: f.write(f'url: https://huggingface.co/{model}\n') f.write(f'branch: {branch}\n') f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n') sha256_str = '' for i in range(len(sha256)): sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n' if sha256_str != '': f.write(f'sha256sum:\n{sha256_str}') # Downloading the files print(f"Downloading the model to {output_folder}") start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads) def check_model_files(model, branch, links, sha256, output_folder): # Validate the checksums validated = True for i in range(len(sha256)): fpath = (output_folder / sha256[i][0]) if not fpath.exists(): print(f"The following file is missing: {fpath}") validated = False continue with open(output_folder / sha256[i][0], "rb") as f: bytes = f.read() file_hash = hashlib.sha256(bytes).hexdigest() if file_hash != sha256[i][1]: print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') validated = False else: print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') if validated: print('[+] Validated checksums of all model files!') else: print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('MODEL', type=str, default=None, nargs='?') parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') args = parser.parse_args() branch = args.branch model = args.MODEL if model is None: model, branch = select_model_from_default_options() # Cleaning up the model/branch names try: model, branch = sanitize_model_and_branch_names(model, branch) except ValueError as err_branch: print(f"Error: {err_branch}") sys.exit() # Getting the download links from Hugging Face links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only) # Getting the output folder output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output) if args.check: # Check previously downloaded files check_model_files(model, branch, links, sha256, output_folder) else: # Download files download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)