import time import traceback import torch from modules import models, sampler_hijack, shared from modules.logging_colors import logger from modules.models import get_device, load_model from modules.text_generation import generate_reply global_scores = None def get_next_logits(*args, **kwargs): if shared.args.idle_timeout > 0 and shared.model is None and shared.model_name not in [None, 'None']: shared.model, shared.tokenizer = load_model(shared.model_name) needs_lock = not args[2] # use_samplers if needs_lock: shared.generation_lock.acquire() try: result = _get_next_logits(*args, **kwargs) except Exception: traceback.print_exc() result = None if needs_lock: models.last_generation_time = time.time() shared.generation_lock.release() return result def _get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return_dict=False): if shared.model is None: logger.error("No model is loaded! Select one in the Model tab.") return 'Error: No model is loaded1 Select one in the Model tab.', previous is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model' is_non_hf_llamacpp = shared.model.__class__.__name__ == 'LlamaCppModel' if use_samplers: if any([is_non_hf_exllamav2, is_non_hf_llamacpp]): logger.error("Sampler hijacking is not supported non-Huggingface loaders.") # sampling is all done in c for exllama, so it is really hard to hijack # it should be possible to hijack llamacpp sampler by hijacking all their sampling methods, # but it is not implemented yet return 'Error: Sampler hijacking is not supported non-Huggingface loaders. Please disable the "Use samplers" option.', previous state['max_new_tokens'] = 1 state['auto_max_new_tokens'] = False for _ in generate_reply(prompt, state): pass scores = sampler_hijack.global_scores[-1] else: if is_non_hf_exllamav2: device = get_device() tokens = shared.tokenizer.encode(prompt) if device: tokens = tokens.to(device) scores = shared.model.get_logits(tokens)[-1][-1] elif is_non_hf_llamacpp: tokens = shared.tokenizer.encode(prompt) scores = shared.model.get_logits(tokens)[-1][-1] else: device = get_device() tokens = shared.tokenizer.encode(prompt, return_tensors='pt') if device: tokens = tokens.to(device) output = shared.model(input_ids=tokens) scores = output['logits'][-1][-1] probs = torch.softmax(scores, dim=-1, dtype=torch.float) topk_values, topk_indices = torch.topk(probs, k=top_logits, largest=True, sorted=True) if is_non_hf_llamacpp: topk_indices = [i.expand((1, 1)) for i in topk_indices] if hasattr(shared.tokenizer, 'convert_ids_to_tokens'): tokens = [shared.tokenizer.convert_ids_to_tokens(int(i)) for i in topk_indices] else: tokens = [shared.tokenizer.decode(i) for i in topk_indices] if return_dict: topk_values = [float(i) for i in topk_values] output = {} for row in list(zip(topk_values, tokens)): key = row[1] if isinstance(key, bytes): try: key = key.decode() except: key = key.decode('latin') output[key] = row[0] return output else: topk_values = [f"{float(i):.5f}" for i in topk_values] output = '' for row in list(zip(topk_values, tokens)): output += f"{row[0]} - {repr(row[1])}\n" return output, previous