import functools from pathlib import Path import yaml def default_preset(): return { 'do_sample': True, 'temperature': 1, 'temperature_last': False, 'top_p': 1, 'min_p': 0, 'top_k': 0, 'typical_p': 1, 'epsilon_cutoff': 0, 'eta_cutoff': 0, 'tfs': 1, 'top_a': 0, 'repetition_penalty': 1, 'presence_penalty': 0, 'frequency_penalty': 0, 'repetition_penalty_range': 0, 'encoder_repetition_penalty': 1, 'no_repeat_ngram_size': 0, 'min_length': 0, 'guidance_scale': 1, 'mirostat_mode': 0, 'mirostat_tau': 5.0, 'mirostat_eta': 0.1, 'penalty_alpha': 0, 'num_beams': 1, 'length_penalty': 1, 'early_stopping': False, 'custom_token_bans': '', } def presets_params(): return [k for k in default_preset()] def load_preset(name): generate_params = default_preset() if name not in ['None', None, '']: with open(Path(f'presets/{name}.yaml'), 'r') as infile: preset = yaml.safe_load(infile) for k in preset: generate_params[k] = preset[k] generate_params['temperature'] = min(1.99, generate_params['temperature']) return generate_params @functools.cache def load_preset_memoized(name): return load_preset(name) def load_preset_for_ui(name, state): generate_params = load_preset(name) state.update(generate_params) return state, *[generate_params[k] for k in presets_params()] def generate_preset_yaml(state): defaults = default_preset() data = {k: state[k] for k in presets_params()} # Remove entries that are identical to the defaults for k in list(data.keys()): if data[k] == defaults[k]: del data[k] return yaml.dump(data, sort_keys=False)