# Text generation web UI A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA. Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. |![Image1](https://github.com/oobabooga/screenshots/raw/main/qa.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/cai3.png) | |:---:|:---:| |![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png) | ![Image4](https://github.com/oobabooga/screenshots/raw/main/galactica.png) | ## Features * Dropdown menu for switching between models * Notebook mode that resembles OpenAI's playground * Chat mode for conversation and role-playing * Instruct mode compatible with various formats, including Alpaca, Vicuna, Open Assistant, Dolly, Koala, ChatGLM, MOSS, RWKV-Raven, Galactica, StableLM, WizardLM, Baize, Ziya, Chinese-Vicuna, MPT, INCITE, Wizard Mega, KoAlpaca, Vigogne, Bactrian, h2o, and OpenBuddy * [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) * Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai) * Nice HTML output for GPT-4chan * [Custom chat characters](docs/Chat-mode.md) * Advanced chat features (send images, get audio responses with TTS) * Very efficient text streaming * Parameter presets * [LLaMA model](docs/LLaMA-model.md) * [4-bit GPTQ mode](docs/GPTQ-models-(4-bit-mode).md) * [LoRA (loading and training)](docs/Using-LoRAs.md) * [llama.cpp](docs/llama.cpp-models.md) * [RWKV model](docs/RWKV-model.md) * 8-bit and 4-bit through bitsandbytes * Layers splitting across GPU(s), CPU, and disk * CPU mode * [FlexGen](docs/FlexGen.md) * [DeepSpeed ZeRO-3](docs/DeepSpeed.md) * API [with](https://github.com/oobabooga/text-generation-webui/blob/main/api-example-stream.py) streaming and [without](https://github.com/oobabooga/text-generation-webui/blob/main/api-example.py) streaming * [Extensions](docs/Extensions.md) - see the [user extensions list](https://github.com/oobabooga/text-generation-webui-extensions) ## Installation ### One-click installers | Windows | Linux | macOS | |-------|--------|--------| | [oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_windows.zip) | [oobabooga-linux.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_linux.zip) |[oobabooga-macos.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_macos.zip) | Just download the zip above, extract it, and double-click on "start". The web UI and all its dependencies will be installed in the same folder. * The source codes are here: https://github.com/oobabooga/one-click-installers * There is no need to run the installers as admin. * AMD doesn't work on Windows. * Huge thanks to [@jllllll](https://github.com/jllllll), [@ClayShoaf](https://github.com/ClayShoaf), and [@xNul](https://github.com/xNul) for their contributions to these installers. ### Manual installation using Conda Recommended if you have some experience with the command line. On Windows, I additionally recommend carrying out the installation on WSL instead of the base system: [WSL installation guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/WSL-installation-guide.md). #### 0. Install Conda https://docs.conda.io/en/latest/miniconda.html On Linux or WSL, it can be automatically installed with these two commands: ``` curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" bash Miniconda3.sh ``` Source: https://educe-ubc.github.io/conda.html #### 1. Create a new conda environment ``` conda create -n textgen python=3.10.9 conda activate textgen ``` #### 2. Install Pytorch | System | GPU | Command | |--------|---------|---------| | Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` | | Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` | | MacOS + MPS (untested) | Any | `pip3 install torch torchvision torchaudio` | The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. #### 2.1 Special instructions * MacOS users: https://github.com/oobabooga/text-generation-webui/pull/393 * AMD users: https://rentry.org/eq3hg #### 3. Install the web UI ``` git clone https://github.com/oobabooga/text-generation-webui cd text-generation-webui pip install -r requirements.txt ``` #### 4. Install GPTQ-for-LLaMa and the monkey patch The base installation covers [transformers](https://github.com/huggingface/transformers) models (`AutoModelForCausalLM` and `AutoModelForSeq2SeqLM` specifically) and [llama.cpp](https://github.com/ggerganov/llama.cpp) (GGML) models. To use GPTQ models, the additional installation steps below are necessary: [GPTQ models (4 bit mode)](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md) #### Note about bitsandbytes bitsandbytes >= 0.39 may not work on older NVIDIA GPUs. In that case, to use `--load-in-8bit`, you may have to downgrade like this: * Linux: `pip install bitsandbytes==0.38.1` * Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl` ### Alternative: manual Windows installation As an alternative to the recommended WSL method, you can install the web UI natively on Windows using this guide. It will be a lot harder and the performance may be slower: [Windows installation guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Windows-installation-guide.md). ### Alternative: Docker ``` ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . cp docker/.env.example .env # Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model docker compose up --build ``` * You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Docker.md) for instructions. * For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui/blob/docker-wrapper/docs/Docker.md#dedicated-docker-repository). ### Updating the requirements From time to time, the `requirements.txt` changes. To update, use this command: ``` conda activate textgen cd text-generation-webui pip install -r requirements.txt --upgrade ``` ## Downloading models Models should be placed inside the `models/` folder. [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads) is the main place to download models. These are some examples: * [Pythia](https://huggingface.co/models?sort=downloads&search=eleutherai%2Fpythia+deduped) * [OPT](https://huggingface.co/models?search=facebook/opt) * [GALACTICA](https://huggingface.co/models?search=facebook/galactica) * [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main) You can automatically download a model from HF using the script `download-model.py`: python download-model.py organization/model For example: python download-model.py facebook/opt-1.3b If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary. #### GGML models You can drop these directly into the `models/` folder, making sure that the file name contains `ggml` somewhere and ends in `.bin`. #### GPT-4chan [GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: * Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) * Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. After downloading the model, follow these steps: 1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. 2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). 3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): ``` python download-model.py EleutherAI/gpt-j-6B --text-only ``` ## Starting the web UI conda activate textgen cd text-generation-webui python server.py Then browse to `http://localhost:7860/?__theme=dark` Optionally, you can use the following command-line flags: #### Basic settings | Flag | Description | |--------------------------------------------|-------------| | `-h`, `--help` | Show this help message and exit. | | `--notebook` | Launch the web UI in notebook mode, where the output is written to the same text box as the input. | | `--chat` | Launch the web UI in chat mode. | | `--character CHARACTER` | The name of the character to load in chat mode by default. | | `--model MODEL` | Name of the model to load by default. | | `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | | `--model-dir MODEL_DIR` | Path to directory with all the models. | | `--lora-dir LORA_DIR` | Path to directory with all the loras. | | `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | | `--no-stream` | Don't stream the text output in real time. | | `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | | `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | | `--verbose` | Print the prompts to the terminal. | #### Accelerate/transformers | Flag | Description | |---------------------------------------------|-------------| | `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow.| | `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | | `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maxmimum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. | | `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.| | `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | | `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. | | `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes).| | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. | | `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. | | `--sdp-attention` | Use torch 2.0's sdp attention. | | `--trust-remote-code` | Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. | #### Accelerate 4-bit ⚠️ Requires minimum compute of 7.0 on Windows at the moment. | Flag | Description | |---------------------------------------------|-------------| | `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | | `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | | `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | | `--use_double_quant` | use_double_quant for 4-bit. | #### llama.cpp | Flag | Description | |-------------|-------------| | `--threads` | Number of threads to use. | | `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | | `--no-mmap` | Prevent mmap from being used. | | `--mlock` | Force the system to keep the model in RAM. | | `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | | `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. | | `--n_ctx N_CTX` | Size of the prompt context. | | `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). | #### GPTQ | Flag | Description | |---------------------------|-------------| | `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | | `--groupsize GROUPSIZE` | Group size. | | `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | | `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | | `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. | `--quant_attn` | (triton) Enable quant attention. | | `--warmup_autotune` | (triton) Enable warmup autotune. | | `--fused_mlp` | (triton) Enable fused mlp. | #### FlexGen | Flag | Description | |------------------|-------------| | `--flexgen` | Enable the use of FlexGen offloading. | | `--percent PERCENT [PERCENT ...]` | FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0). | | `--compress-weight` | FlexGen: Whether to compress weight (default: False).| | `--pin-weight [PIN_WEIGHT]` | FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%). | #### DeepSpeed | Flag | Description | |---------------------------------------|-------------| | `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | | `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | | `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | #### RWKV | Flag | Description | |---------------------------------|-------------| | `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | | `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | #### Gradio | Flag | Description | |---------------------------------------|-------------| | `--listen` | Make the web UI reachable from your local network. | | `--listen-host LISTEN_HOST` | The hostname that the server will use. | | `--listen-port LISTEN_PORT` | The listening port that the server will use. | | `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | | `--auto-launch` | Open the web UI in the default browser upon launch. | | `--gradio-auth USER:PWD` | set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" | | `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" | #### API | Flag | Description | |---------------------------------------|-------------| | `--api` | Enable the API extension. | | `--public-api` | Create a public URL for the API using Cloudfare. | #### Multimodal | Flag | Description | |---------------------------------------|-------------| | `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | Out of memory errors? [Check the low VRAM guide](docs/Low-VRAM-guide.md). ## Presets Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup. By default, 10 presets based on NovelAI and KoboldAI presets are included. These were selected out of a sample of 43 presets after applying a K-Means clustering algorithm and selecting the elements closest to the average of each cluster. [Visualization](https://user-images.githubusercontent.com/112222186/228956352-1addbdb9-2456-465a-b51d-089f462cd385.png) ## Documentation Make sure to check out the documentation for an in-depth guide on how to use the web UI. https://github.com/oobabooga/text-generation-webui/tree/main/docs ## Contributing Pull requests, suggestions, and issue reports are welcome. You are also welcome to review open pull requests. Before reporting a bug, make sure that you have: 1. Created a conda environment and installed the dependencies exactly as in the *Installation* section above. 2. [Searched](https://github.com/oobabooga/text-generation-webui/issues) to see if an issue already exists for the issue you encountered. ## Credits - Gradio dropdown menu refresh button, code for reloading the interface: https://github.com/AUTOMATIC1111/stable-diffusion-webui - NovelAI and KoboldAI presets: https://github.com/KoboldAI/KoboldAI-Client/wiki/Settings-Presets - Code for early stopping in chat mode, code for some of the sliders: https://github.com/PygmalionAI/gradio-ui/