import os from pathlib import Path from typing import Any, Dict, Optional, Union import torch from torch.nn import CrossEntropyLoss from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from modules import RoPE, shared from modules.logging_colors import logger try: import llama_cpp except: llama_cpp = None try: import llama_cpp_cuda except: llama_cpp_cuda = None def llama_cpp_lib(): if (shared.args.cpu and llama_cpp is not None) or llama_cpp_cuda is None: return llama_cpp else: return llama_cpp_cuda class LlamacppHF(PreTrainedModel): def __init__(self, model, path): super().__init__(PretrainedConfig()) self.model = model self.generation_config = GenerationConfig() self.past_seq = None self.llamacpp_cache = { 'n_tokens': self.model.n_tokens, 'input_ids': self.model.input_ids, 'scores': self.model.scores, 'ctx': self.model.ctx } if shared.args.cfg_cache: self.past_seq_negative = None self.llamacpp_cache_negative = { 'n_tokens': self.model.n_tokens, 'input_ids': self.model.input_ids.copy(), 'scores': self.model.scores.copy(), 'ctx': llama_cpp_lib().llama_new_context_with_model(model.model, model.params) } def _validate_model_class(self): pass def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): pass def prepare_inputs_for_generation(self, input_ids, **kwargs): return {'input_ids': input_ids, **kwargs} def save_cache(self): self.llamacpp_cache.update({ 'n_tokens': self.model.n_tokens, 'input_ids': self.model.input_ids, 'scores': self.model.scores, 'ctx': self.model.ctx }) def save_negative_cache(self): self.llamacpp_cache_negative.update({ 'n_tokens': self.model.n_tokens, 'input_ids': self.model.input_ids, 'scores': self.model.scores, 'ctx': self.model.ctx }) def load_cache(self): self.model.n_tokens = self.llamacpp_cache['n_tokens'] self.model.input_ids = self.llamacpp_cache['input_ids'] self.model.scores = self.llamacpp_cache['scores'] self.model.ctx = self.llamacpp_cache['ctx'] def load_negative_cache(self): self.model.n_tokens = self.llamacpp_cache_negative['n_tokens'] self.model.input_ids = self.llamacpp_cache_negative['input_ids'] self.model.scores = self.llamacpp_cache_negative['scores'] self.model.ctx = self.llamacpp_cache_negative['ctx'] @property def device(self) -> torch.device: return torch.device(0) def __call__(self, *args, **kwargs): use_cache = kwargs.get('use_cache', True) labels = kwargs.get('labels', None) past_key_values = kwargs.get('past_key_values', None) if len(args) > 0: if not shared.args.cfg_cache: logger.error("Please enable the cfg-cache option to use CFG with llamacpp_HF.") return input_ids = args[0] is_negative = True past_seq = self.past_seq_negative self.load_negative_cache() else: input_ids = kwargs['input_ids'] is_negative = False past_seq = self.past_seq self.load_cache() seq = input_ids[0].tolist() if is_negative and past_key_values is not None: seq = past_key_values + seq seq_tensor = torch.tensor(seq) reset = True # Make the forward call. The prefix-match code has been adapted from # https://github.com/abetlen/llama-cpp-python/commit/f4090a0bb2a2a25acfe28d31c82cc1aa273bedee if labels is None: if past_seq is not None: min_length = min(past_seq.shape[0], seq_tensor.shape[0]) indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length])) if len(indices) > 0: longest_prefix = indices[0].item() else: longest_prefix = min_length if longest_prefix > 0: reset = False self.model.n_tokens = longest_prefix if len(seq_tensor) - longest_prefix > 0: self.model.eval(seq[longest_prefix:]) if reset: self.model.reset() self.model.eval(seq) logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(input_ids.device) else: self.model.reset() self.model.eval(seq) logits = torch.tensor(self.model.eval_logits) logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device) if is_negative: self.save_negative_cache() self.past_seq_negative = seq_tensor else: self.save_cache() self.past_seq = seq_tensor loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, logits.shape[-1]) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" if isinstance(pretrained_model_name_or_path, str): pretrained_model_name_or_path = Path(pretrained_model_name_or_path) path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) if path.is_file(): model_file = path else: model_file = list(path.glob('*.gguf'))[0] logger.info(f"llama.cpp weights detected: {model_file}\n") if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '': tensor_split_list = None else: tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")] params = { 'model_path': str(model_file), 'n_ctx': shared.args.n_ctx, 'seed': int(shared.args.llama_cpp_seed), 'n_threads': shared.args.threads or None, 'n_batch': shared.args.n_batch, 'use_mmap': not shared.args.no_mmap, 'use_mlock': shared.args.mlock, 'mul_mat_q': shared.args.mul_mat_q, 'low_vram': shared.args.low_vram, 'numa': shared.args.numa, 'n_gpu_layers': shared.args.n_gpu_layers, 'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base), 'tensor_split': tensor_split_list, 'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, 'logits_all': True, } Llama = llama_cpp_lib().Llama model = Llama(**params) return LlamacppHF(model, model_file)