import os from pathlib import Path from typing import Any, Dict, Optional, Union import torch from torch.nn import CrossEntropyLoss from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from modules import shared from modules.logging_colors import logger import llama_cpp if torch.cuda.is_available() and not torch.version.hip: try: import llama_cpp_cuda except: llama_cpp_cuda = None else: llama_cpp_cuda = None def llama_cpp_lib(): if shared.args.cpu or llama_cpp_cuda is None: return llama_cpp else: return llama_cpp_cuda class LlamacppHF(PreTrainedModel): def __init__(self, model): super().__init__(PretrainedConfig()) self.model = model self.generation_config = GenerationConfig() self.cache = None def _validate_model_class(self): pass def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): pass def prepare_inputs_for_generation(self, input_ids, **kwargs): return {'input_ids': input_ids, **kwargs} @property def device(self) -> torch.device: return torch.device(0) def __call__(self, *args, **kwargs): input_ids = args[0] if len(args) > 0 else kwargs['input_ids'] use_cache = kwargs.get('use_cache', True) labels = kwargs.get('labels', None) cache = kwargs.get('past_key_values', None) seq = input_ids[0].tolist() # Make the forward call seq_tensor = torch.tensor(seq) if labels is None: if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]): self.model.reset() self.model.eval(seq) else: self.model.eval([seq[-1]]) logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(kwargs['input_ids'].device) else: self.model.reset() self.model.eval(seq) logits = torch.tensor(self.model.eval_logits) logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device) self.cache = seq_tensor # Based on transformers/models/llama/modeling_llama.py loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, logits.shape[-1]) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" if isinstance(pretrained_model_name_or_path, str): pretrained_model_name_or_path = Path(pretrained_model_name_or_path) path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) if path.is_file(): model_file = path else: model_file = list(path.glob('*ggml*.bin'))[0] logger.info(f"llama.cpp weights detected: {model_file}\n") if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '': tensor_split_list = None else: tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")] params = { 'model_path': str(model_file), 'n_ctx': shared.args.n_ctx, 'seed': int(shared.args.llama_cpp_seed), 'n_threads': shared.args.threads or None, 'n_batch': shared.args.n_batch, 'use_mmap': not shared.args.no_mmap, 'use_mlock': shared.args.mlock, 'low_vram': shared.args.low_vram, 'n_gpu_layers': shared.args.n_gpu_layers, 'rope_freq_base': 10000 * shared.args.alpha_value ** (64 / 63.), 'tensor_split': tensor_split_list, 'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, 'n_gqa': shared.args.n_gqa or None, 'rms_norm_eps': shared.args.rms_norm_eps or None, 'logits_all': True, } Llama = llama_cpp_lib().Llama model = Llama(**params) return LlamacppHF(model)