import functools from collections import OrderedDict import gradio as gr from modules import shared loaders_and_params = OrderedDict({ 'Transformers': [ 'cpu_memory', 'gpu_memory', 'trust_remote_code', 'load_in_8bit', 'bf16', 'cpu', 'disk', 'auto_devices', 'load_in_4bit', 'use_double_quant', 'quant_type', 'compute_dtype', 'trust_remote_code', 'alpha_value', 'compress_pos_emb', 'transformers_info' ], 'ExLlama_HF': [ 'gpu_split', 'max_seq_len', 'alpha_value', 'compress_pos_emb', 'exllama_HF_info', ], 'ExLlama': [ 'gpu_split', 'max_seq_len', 'alpha_value', 'compress_pos_emb', 'exllama_info', ], 'AutoGPTQ': [ 'triton', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'no_use_cuda_fp16', 'wbits', 'groupsize', 'desc_act', 'gpu_memory', 'cpu_memory', 'cpu', 'disk', 'auto_devices', 'trust_remote_code', 'autogptq_info', ], 'GPTQ-for-LLaMa': [ 'wbits', 'groupsize', 'model_type', 'pre_layer', 'gptq_for_llama_info', ], 'llama.cpp': [ 'n_ctx', 'n_gqa', 'rms_norm_eps', 'n_gpu_layers', 'n_batch', 'threads', 'no_mmap', 'low_vram', 'mlock', 'llama_cpp_seed', 'alpha_value', 'compress_pos_emb', 'cpu', ], 'llamacpp_HF': [ 'n_ctx', 'n_gqa', 'rms_norm_eps', 'n_gpu_layers', 'n_batch', 'threads', 'no_mmap', 'low_vram', 'mlock', 'alpha_value', 'compress_pos_emb', 'cpu', 'llamacpp_HF_info', ], 'ctransformers': [ 'n_ctx', 'n_gpu_layers', 'n_batch', 'threads', 'model_type' ] }) loaders_samplers = { 'Transformers': { 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'seed', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'guidance_scale', 'negative_prompt', 'ban_eos_token', 'add_bos_token', 'skip_special_tokens', 'auto_max_new_tokens', }, 'ExLlama_HF': { 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'seed', 'do_sample', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'ban_eos_token', 'add_bos_token', 'skip_special_tokens', 'auto_max_new_tokens', }, 'ExLlama': { 'temperature', 'top_p', 'top_k', 'typical_p', 'repetition_penalty', 'repetition_penalty_range', 'seed', 'guidance_scale', 'negative_prompt', 'ban_eos_token', 'auto_max_new_tokens', }, 'AutoGPTQ': { 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'seed', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'guidance_scale', 'negative_prompt', 'ban_eos_token', 'add_bos_token', 'skip_special_tokens', 'auto_max_new_tokens', }, 'GPTQ-for-LLaMa': { 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'seed', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'guidance_scale', 'negative_prompt', 'ban_eos_token', 'add_bos_token', 'skip_special_tokens', 'auto_max_new_tokens', }, 'llama.cpp': { 'temperature', 'top_p', 'top_k', 'tfs', 'repetition_penalty', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'ban_eos_token', }, 'llamacpp_HF': { 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'seed', 'do_sample', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'ban_eos_token', 'add_bos_token', 'skip_special_tokens', 'auto_max_new_tokens', }, 'ctransformers': { 'temperature', 'top_p', 'top_k', 'repetition_penalty', 'repetition_penalty_range', } } loaders_model_types = { 'GPTQ-for-LLaMa': [ "None", "llama", "opt", "gptj" ], 'ctransformers': [ "None", "gpt2", "gptj", "gptneox", "llama", "mpt", "dollyv2" "replit", "starcoder", "falcon" ], } @functools.cache def list_all_samplers(): all_samplers = set() for k in loaders_samplers: for sampler in loaders_samplers[k]: all_samplers.add(sampler) return sorted(all_samplers) def blacklist_samplers(loader): all_samplers = list_all_samplers() if loader == 'All': return [gr.update(visible=True) for sampler in all_samplers] else: return [gr.update(visible=True) if sampler in loaders_samplers[loader] else gr.update(visible=False) for sampler in all_samplers] def get_model_types(loader): if loader in loaders_model_types: return loaders_model_types[loader] return ["None"] def get_gpu_memory_keys(): return [k for k in shared.gradio if k.startswith('gpu_memory')] @functools.cache def get_all_params(): all_params = set() for k in loaders_and_params: for el in loaders_and_params[k]: all_params.add(el) if 'gpu_memory' in all_params: all_params.remove('gpu_memory') for k in get_gpu_memory_keys(): all_params.add(k) return sorted(all_params) def make_loader_params_visible(loader): params = [] all_params = get_all_params() if loader in loaders_and_params: params = loaders_and_params[loader] if 'gpu_memory' in params: params.remove('gpu_memory') params += get_gpu_memory_keys() return [gr.update(visible=True) if k in params else gr.update(visible=False) for k in all_params]