import re import textwrap from urllib.request import urlopen import chromadb import gradio as gr import posthog import torch from bs4 import BeautifulSoup from chromadb.config import Settings from modules import shared from sentence_transformers import SentenceTransformer print('Intercepting all calls to posthog :)') posthog.capture = lambda *args, **kwargs: None class Collecter(): def __init__(self): pass def add(self, texts: list[str]): pass def get(self, search_strings: list[str], n_results: int) -> list[str]: pass def clear(self): pass class Embedder(): def __init__(self): pass def embed(self, text: str) -> list[torch.Tensor]: pass class ChromaCollector(Collecter): def __init__(self, embedder: Embedder): super().__init__() self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False)) self.embedder = embedder self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed) self.ids = [] def add(self, texts: list[str]): self.ids = [f"id{i}" for i in range(len(texts))] self.collection.add(documents=texts, ids=self.ids) def get(self, search_strings: list[str], n_results: int) -> list[str]: result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['documents'][0] return result def clear(self): self.collection.delete(ids=self.ids) class SentenceTransformerEmbedder(Embedder): def __init__(self) -> None: self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") self.embed = self.model.encode embedder = SentenceTransformerEmbedder() collector = ChromaCollector(embedder) chunk_count = 5 def feed_data_into_collector(corpus, chunk_len): global collector chunk_len = int(chunk_len) cumulative = '' cumulative += "Breaking the input dataset...\n\n" yield cumulative data_chunks = [corpus[i:i + chunk_len] for i in range(0, len(corpus), chunk_len)] cumulative += f"{len(data_chunks)} chunks have been found.\n\nAdding the chunks to the database...\n\n" yield cumulative collector.clear() collector.add(data_chunks) cumulative += "Done." yield cumulative def feed_file_into_collector(file, chunk_len): yield 'Reading the input dataset...\n\n' text = file.decode('utf-8') for i in feed_data_into_collector(text, chunk_len): yield i def feed_url_into_collector(urls, chunk_len): urls = urls.strip().split('\n') all_text = '' cumulative = '' for url in urls: cumulative += f'Loading {url}...\n\n' yield cumulative html = urlopen(url).read() soup = BeautifulSoup(html, features="html.parser") for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n\n'.join(chunk for chunk in chunks if chunk) all_text += text for i in feed_data_into_collector(all_text, chunk_len): yield i def apply_settings(_chunk_count): global chunk_count chunk_count = _chunk_count settings_to_display = { 'chunk_count': int(chunk_count), } yield f"The following settings are now active: {str(settings_to_display)}" def input_modifier(string): # Find the user input pattern = re.compile(r"<\|begin-user-input\|>(.*?)<\|end-user-input\|>", re.DOTALL) match = re.search(pattern, string) if match: user_input = match.group(1).strip() else: user_input = '' # Get the most similar chunks results = collector.get(user_input, n_results=chunk_count) # Make the replacements string = string.replace('<|begin-user-input|>', '') string = string.replace('<|end-user-input|>', '') string = string.replace('<|injection-point|>', '\n'.join(results)) return string def ui(): with gr.Accordion("Click for more information...", open=False): gr.Markdown(textwrap.dedent(""" ## About This extension takes a dataset as input, breaks it into chunks, and adds the result to a local/offline Chroma database. The database is then queried during inference time to get the excerpts that are closest to your input. The idea is to create an arbitrarily large pseudocontext. ## How to use it 1) Paste your input text (of whatever length) into the text box below. 2) Click on "Load data" to feed this text into the Chroma database. 3) In your prompt, enter your question between `<|begin-user-input|>` and `<|end-user-input|>`, and specify the injection point with `<|injection-point|>`. By default, the 5 closest chunks will be injected. You can customize this value in the "Generation settings" tab. The special tokens mentioned above (`<|begin-user-input|>`, `<|end-user-input|>`, and `<|injection-point|>`) are removed when the injection happens. ## Example For your convenience, you can use the following prompt as a starting point (for Alpaca models): ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: You are ArxivGPT, trained on millions of Arxiv papers. You always answer the question, even if full context isn't provided to you. The following are snippets from an Arxiv paper. Use the snippets to answer the question. Think about it step by step <|injection-point|> ### Input: <|begin-user-input|> What datasets are mentioned in the paper above? <|end-user-input|> ### Response: ``` *This extension is currently experimental and under development.* """)) if shared.is_chat(): # Chat mode has to be handled differently, probably using a custom_generate_chat_prompt pass else: with gr.Row(): with gr.Column(): with gr.Tab("Text input"): data_input = gr.Textbox(lines=20, label='Input data') update_data = gr.Button('Load data') with gr.Tab("URL input"): url_input = gr.Textbox(lines=10, label='Input URLs', info='Enter one or more URLs separated by newline characters.') update_url = gr.Button('Load data') with gr.Tab("File input"): file_input = gr.File(label='Input file', type='binary') update_file = gr.Button('Load data') with gr.Tab("Generation settings"): chunk_count = gr.Number(value=5, label='Chunk count', info='The number of closest-matching chunks to include in the prompt.') update_settings = gr.Button('Apply changes') chunk_len = gr.Number(value=700, label='Chunk length', info='In characters, not tokens. This value is used when you click on "Load data".') with gr.Column(): last_updated = gr.Markdown() update_data.click(feed_data_into_collector, [data_input, chunk_len], last_updated, show_progress=False) update_url.click(feed_url_into_collector, [url_input, chunk_len], last_updated, show_progress=False) update_file.click(feed_file_into_collector, [file_input, chunk_len], last_updated, show_progress=False) update_settings.click(apply_settings, [chunk_count], last_updated, show_progress=False)