import re import sys from pathlib import Path import accelerate import torch import transformers from transformers import AutoConfig, AutoModelForCausalLM import modules.shared as shared sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) import llama_inference_offload from modelutils import find_layers from quant import make_quant def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head'], kernel_switch_threshold=128): config = AutoConfig.from_pretrained(model) def noop(*args, **kwargs): pass torch.nn.init.kaiming_uniform_ = noop torch.nn.init.uniform_ = noop torch.nn.init.normal_ = noop torch.set_default_dtype(torch.half) transformers.modeling_utils._init_weights = False torch.set_default_dtype(torch.half) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float) model = model.eval() layers = find_layers(model) for name in exclude_layers: if name in layers: del layers[name] make_quant(model, layers, wbits, groupsize, faster=faster_kernel, kernel_switch_threshold=kernel_switch_threshold) del layers print('Loading model ...') if checkpoint.endswith('.safetensors'): from safetensors.torch import load_file as safe_load model.load_state_dict(safe_load(checkpoint)) else: model.load_state_dict(torch.load(checkpoint)) model.seqlen = 2048 print('Done.') return model def load_quantized(model_name): if not shared.args.model_type: # Try to determine model type from model name if model_name.lower().startswith(('llama', 'alpaca')): model_type = 'llama' elif model_name.lower().startswith(('opt', 'galactica')): model_type = 'opt' elif model_name.lower().startswith(('gpt-j', 'pygmalion-6b')): model_type = 'gptj' else: print("Can't determine model type from model name. Please specify it manually using --model_type " "argument") exit() else: model_type = shared.args.model_type.lower() if model_type == 'llama' and shared.args.pre_layer: load_quant = llama_inference_offload.load_quant elif model_type in ('llama', 'opt', 'gptj'): load_quant = _load_quant else: print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") exit() # Now we are going to try to locate the quantized model file. path_to_model = Path(f'models/{model_name}') found_pts = list(path_to_model.glob("*.pt")) found_safetensors = list(path_to_model.glob("*.safetensors")) pt_path = None if len(found_pts) == 1: pt_path = found_pts[0] elif len(found_safetensors) == 1: pt_path = found_safetensors[0] else: if path_to_model.name.lower().startswith('llama-7b'): pt_model = f'llama-7b-{shared.args.wbits}bit' elif path_to_model.name.lower().startswith('llama-13b'): pt_model = f'llama-13b-{shared.args.wbits}bit' elif path_to_model.name.lower().startswith('llama-30b'): pt_model = f'llama-30b-{shared.args.wbits}bit' elif path_to_model.name.lower().startswith('llama-65b'): pt_model = f'llama-65b-{shared.args.wbits}bit' else: pt_model = f'{model_name}-{shared.args.wbits}bit' # Try to find the .safetensors or .pt both in models/ and in the subfolder for path in [Path(p+ext) for ext in ['.safetensors', '.pt'] for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]: if path.exists(): print(f"Found {path}") pt_path = path break if not pt_path: print("Could not find the quantized model in .pt or .safetensors format, exiting...") exit() # qwopqwop200's offload if shared.args.pre_layer: model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer) else: threshold = False if model_type == 'gptj' else 128 model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) # accelerate offload (doesn't work properly) if shared.args.gpu_memory: memory_map = list(map(lambda x : x.strip(), shared.args.gpu_memory)) max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' max_memory = {} for i in range(len(memory_map)): max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] max_memory['cpu'] = max_cpu_memory device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) print("Using the following device map for the 4-bit model:", device_map) # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) # No offload elif not shared.args.cpu: model = model.to(torch.device('cuda:0')) return model