import importlib import math import re import traceback from functools import partial from pathlib import Path import gradio as gr import psutil import torch from modules import loaders, shared, ui, utils from modules.logging_colors import logger from modules.LoRA import add_lora_to_model from modules.models import load_model, unload_model from modules.models_settings import ( apply_model_settings_to_state, get_model_settings_from_yamls, save_model_settings, update_model_parameters ) from modules.utils import gradio def create_ui(): # Finding the default values for the GPU and CPU memories total_mem = [] for i in range(torch.cuda.device_count()): total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024))) default_gpu_mem = [] if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0: for i in shared.args.gpu_memory: if 'mib' in i.lower(): default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i))) else: default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000) while len(default_gpu_mem) < len(total_mem): default_gpu_mem.append(0) total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024)) if shared.args.cpu_memory is not None: default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory) else: default_cpu_mem = 0 with gr.Tab("Model", elem_id="model-tab"): with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): with gr.Row(): shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), value=shared.model_name, label='Model', elem_classes='slim-dropdown') ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button') shared.gradio['load_model'] = gr.Button("Load", visible=not shared.settings['autoload_model'], elem_classes='refresh-button') shared.gradio['unload_model'] = gr.Button("Unload", elem_classes='refresh-button') shared.gradio['reload_model'] = gr.Button("Reload", elem_classes='refresh-button') shared.gradio['save_model_settings'] = gr.Button("Save settings", elem_classes='refresh-button') with gr.Column(): with gr.Row(): shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), value=shared.lora_names, label='LoRA(s)', elem_classes='slim-dropdown') ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': utils.get_available_loras(), 'value': shared.lora_names}, 'refresh-button') shared.gradio['lora_menu_apply'] = gr.Button(value='Apply LoRAs', elem_classes='refresh-button') with gr.Row(): with gr.Column(): shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=loaders.loaders_and_params.keys(), value=None) with gr.Box(): with gr.Row(): with gr.Column(): for i in range(len(total_mem)): shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i]) shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem) shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:') shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype) shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type) shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers) shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx) shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads) shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch) shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None") shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None") shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None") shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0) shared.gradio['autogptq_info'] = gr.Markdown('* ExLlama_HF is recommended over AutoGPTQ for models derived from LLaMA.') shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=16384, step=256, info='Maximum sequence length.', value=shared.args.max_seq_len) shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.1, info='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value) shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base) shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb) with gr.Column(): shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton) shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Disable if running low on VRAM.') shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.') shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.') shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.') shared.gradio['disable_exllama'] = gr.Checkbox(label="disable_exllama", value=shared.args.disable_exllama, info='Disable ExLlama kernel, which can improve inference speed on some systems.') shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu) shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit) shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16) shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices) shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk) shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit) shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant) shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap) shared.gradio['low_vram'] = gr.Checkbox(label="low-vram", value=shared.args.low_vram) shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock) shared.gradio['mul_mat_q'] = gr.Checkbox(label="mul_mat_q", value=shared.args.mul_mat_q) shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Create an additional cache for CFG negative prompts.') shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17') shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed) shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.') shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa support is currently only kept for compatibility with older GPUs. AutoGPTQ or ExLlama is preferred when compatible. GPTQ-for-LLaMa is installed by default with the webui on supported systems. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).') shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).') shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.') shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. To use it, make sure to first download oobabooga/llama-tokenizer under "Download model or LoRA".') with gr.Column(): with gr.Row(): shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.') shared.gradio['custom_model_menu'] = gr.Textbox(label="Download model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main. To download a single file, enter its name in the second box.") shared.gradio['download_specific_file'] = gr.Textbox(placeholder="File name (for GGUF models)", show_label=False, max_lines=1) with gr.Row(): shared.gradio['download_model_button'] = gr.Button("Download", variant='primary') shared.gradio['get_file_list'] = gr.Button("Get file list") with gr.Row(): shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready') def create_event_handlers(): shared.gradio['loader'].change( loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params())).then( lambda value: gr.update(choices=loaders.get_model_types(value)), gradio('loader'), gradio('model_type')) # In this event handler, the interface state is read and updated # with the model defaults (if any), and then the model is loaded # unless "autoload_model" is unchecked shared.gradio['model_menu'].change( ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( apply_model_settings_to_state, gradio('model_menu', 'interface_state'), gradio('interface_state')).then( ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then( update_model_parameters, gradio('interface_state'), None).then( load_model_wrapper, gradio('model_menu', 'loader', 'autoload_model'), gradio('model_status'), show_progress=False).success( update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')) shared.gradio['load_model'].click( ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( update_model_parameters, gradio('interface_state'), None).then( partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False).success( update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')) shared.gradio['unload_model'].click( unload_model, None, None).then( lambda: "Model unloaded", None, gradio('model_status')) shared.gradio['reload_model'].click( unload_model, None, None).then( ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( update_model_parameters, gradio('interface_state'), None).then( partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False).success( update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')) shared.gradio['save_model_settings'].click( ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( save_model_settings, gradio('model_menu', 'interface_state'), gradio('model_status'), show_progress=False) shared.gradio['lora_menu_apply'].click(load_lora_wrapper, gradio('lora_menu'), gradio('model_status'), show_progress=False) shared.gradio['download_model_button'].click(download_model_wrapper, gradio('custom_model_menu', 'download_specific_file'), gradio('model_status'), show_progress=True) shared.gradio['get_file_list'].click(partial(download_model_wrapper, return_links=True), gradio('custom_model_menu', 'download_specific_file'), gradio('model_status'), show_progress=True) shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), gradio('autoload_model'), gradio('load_model')) def load_model_wrapper(selected_model, loader, autoload=False): if not autoload: yield f"The settings for `{selected_model}` have been updated.\n\nClick on \"Load\" to load it." return if selected_model == 'None': yield "No model selected" else: try: yield f"Loading `{selected_model}`..." shared.model_name = selected_model unload_model() if selected_model != '': shared.model, shared.tokenizer = load_model(shared.model_name, loader) if shared.model is not None: output = f"Successfully loaded `{selected_model}`." settings = get_model_settings_from_yamls(selected_model) if 'instruction_template' in settings: output += '\n\nIt seems to be an instruction-following model with template "{}". In the chat tab, instruct or chat-instruct modes should be used.'.format(settings['instruction_template']) yield output else: yield f"Failed to load `{selected_model}`." except: exc = traceback.format_exc() logger.error('Failed to load the model.') print(exc) yield exc.replace('\n', '\n\n') def load_lora_wrapper(selected_loras): yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras))) add_lora_to_model(selected_loras) yield ("Successfuly applied the LoRAs") def download_model_wrapper(repo_id, specific_file, progress=gr.Progress(), return_links=False): try: downloader_module = importlib.import_module("download-model") downloader = downloader_module.ModelDownloader() repo_id_parts = repo_id.split(":") model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main" check = False progress(0.0) yield ("Cleaning up the model/branch names") model, branch = downloader.sanitize_model_and_branch_names(model, branch) yield ("Getting the download links from Hugging Face") links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=False, specific_file=specific_file) if return_links: yield '\n\n'.join([f"`{Path(link).name}`" for link in links]) return yield ("Getting the output folder") base_folder = shared.args.lora_dir if is_lora else shared.args.model_dir output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, base_folder=base_folder) if check: progress(0.5) yield ("Checking previously downloaded files") downloader.check_model_files(model, branch, links, sha256, output_folder) progress(1.0) else: yield (f"Downloading file{'s' if len(links) > 1 else ''} to `{output_folder}/`") downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, threads=1, is_llamacpp=is_llamacpp) yield ("Done!") except: progress(1.0) yield traceback.format_exc().replace('\n', '\n\n') def update_truncation_length(current_length, state): if state['loader'] in ['ExLlama', 'ExLlama_HF']: return state['max_seq_len'] elif state['loader'] in ['llama.cpp', 'llamacpp_HF', 'ctransformers']: return state['n_ctx'] else: return current_length