Based on https://github.com/tloen/alpaca-lora ## Instructions 1. Download a LoRA, for instance: ``` python download-model.py tloen/alpaca-lora-7b ``` 2. Load the LoRA. 16-bit, `--load-in-8bit`, `--load-in-4bit`, and CPU modes work: ``` python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-8bit python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-4bit python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --cpu ``` * For using LoRAs with GPTQ quantized models, follow [these special instructions](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode). * Instead of using the `--lora` command-line flag, you can also select the LoRA in the "Parameters" tab of the interface. ## Prompt For the Alpaca LoRA in particular, the prompt must be formatted like this: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a Python script that generates text using the transformers library. ### Response: ``` Sample output: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a Python script that generates text using the transformers library. ### Response: import transformers from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModelForCausalLM.from_pretrained("bert-base-uncased") texts = ["Hello world", "How are you"] for sentence in texts: sentence = tokenizer(sentence) print(f"Generated {len(sentence)} tokens from '{sentence}'") output = model(sentences=sentence).predict() print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}") ``` ## Training a LoRA You can train your own LoRAs from the `Training` tab. See [Training LoRAs](Training-LoRAs.md) for details.