from functools import partial import torch import transformers import math from torch.optim.lr_scheduler import LambdaLR #FPHAM custom training scheduller block - should be extracted to separate file last_print_label = '' def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): global last_print_label print_label = '' num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps) if current_step < num_warmup_steps: print_label = 'Scheduler: Warmup' elif current_step < num_firstepoch_steps: print_label = 'Scheduler: Hold' else: print_label = 'Scheduler: Annealing' if print_label != last_print_label: print(print_label) last_print_label = print_label if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) if current_step < num_firstepoch_steps: return 1.0 progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps)) num_cycles = 0.5 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) def custom_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): """ Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial( _get_fp_cosine_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_firstepoch_steps = num_firstepoch_steps, ) return LambdaLR(optimizer, lr_lambda, last_epoch) class FPSchedulerTrainer(transformers.Trainer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): #Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument. if self.args.lr_scheduler_type == 'cosine': num_train_epochs = self.args.num_train_epochs num_warmup_steps=self.args.get_warmup_steps(num_training_steps) num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs) num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc) if num_warmup_acc>num_firstepoch_steps_acc: print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m") print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") else: print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") self.lr_scheduler = custom_scheduler_with_warmup( optimizer=self.optimizer if optimizer is None else optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_firstepoch_steps = num_firstepoch_steps, ) self._created_lr_scheduler = True return self.lr_scheduler else: return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)