import torch from modules import sampler_hijack, shared from modules.exllama import ExllamaModel from modules.exllamav2 import Exllamav2Model from modules.llamacpp_model import LlamaCppModel from modules.logging_colors import logger from modules.text_generation import generate_reply global_scores = None def get_next_logits(prompt, state, use_samplers, previous): if shared.model is None: logger.error("No model is loaded! Select one in the Model tab.") return 'Error: No model is loaded1 Select one in the Model tab.', previous is_non_hf_exllamav2 = isinstance(shared.model, Exllamav2Model) is_non_hf_exllamav1 = isinstance(shared.model, ExllamaModel) is_non_hf_llamacpp = isinstance(shared.model, LlamaCppModel) if use_samplers: if any([is_non_hf_exllamav2, is_non_hf_exllamav1, is_non_hf_llamacpp]): logger.error("Sampler hijacking is not supported non-Huggingface loaders.") # sampling is all done in c for exllama, so it is really hard to hijack # it should be possible to hijack llamacpp sampler by hijacking all their sampling methods, # but it is not implemented yet return 'Error: Sampler hijacking is not supported non-Huggingface loaders. Please disable the "Use samplers" option.', previous state['max_new_tokens'] = 1 state['auto_max_new_tokens'] = False for _ in generate_reply(prompt, state): pass scores = sampler_hijack.global_scores[-1] else: if is_non_hf_exllamav2 or is_non_hf_exllamav1: tokens = shared.tokenizer.encode(prompt).cuda() scores = shared.model.get_logits(tokens)[-1][-1] elif is_non_hf_llamacpp: tokens = shared.tokenizer.encode(prompt) scores = shared.model.get_logits(tokens)[-1][-1] else: tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda() output = shared.model(input_ids=tokens) scores = output['logits'][-1][-1] probs = torch.softmax(scores, dim=-1, dtype=torch.float) topk_values, topk_indices = torch.topk(probs, k=50, largest=True, sorted=True) topk_values = [f"{float(i):.5f}" for i in topk_values] if is_non_hf_exllamav1 or is_non_hf_llamacpp: topk_indices = [i.expand((1, 1)) for i in topk_indices] tokens = [shared.tokenizer.decode(i) for i in topk_indices] output = '' for row in list(zip(topk_values, tokens)): output += f"{row[0]} - {repr(row[1])}\n" return output, previous