import asyncio import json import logging import os import traceback from collections import deque from threading import Thread import speech_recognition as sr import uvicorn from fastapi import Depends, FastAPI, Header, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.requests import Request from fastapi.responses import JSONResponse from pydub import AudioSegment from sse_starlette import EventSourceResponse import extensions.openai.completions as OAIcompletions import extensions.openai.embeddings as OAIembeddings import extensions.openai.images as OAIimages import extensions.openai.logits as OAIlogits import extensions.openai.models as OAImodels import extensions.openai.moderations as OAImoderations from extensions.openai.errors import ServiceUnavailableError from extensions.openai.tokens import token_count, token_decode, token_encode from extensions.openai.utils import _start_cloudflared, generate_in_executor, run_in_executor from modules import shared from modules.logging_colors import logger from modules.models import unload_model from modules.text_generation import stop_everything_event import functools from .typing import ( ChatCompletionRequest, ChatCompletionResponse, ChatPromptResponse, CompletionRequest, CompletionResponse, DecodeRequest, DecodeResponse, TranscriptionsRequest, TranscriptionsResponse, ImageGenerationRequest, ImageGenerationResponse, EmbeddingsRequest, EmbeddingsResponse, EncodeRequest, EncodeResponse, LoadLorasRequest, LoadModelRequest, LogitsRequest, LogitsResponse, LoraListResponse, ModelInfoResponse, ModelListResponse, TokenCountResponse, to_dict ) from io import BytesIO params = { 'embedding_device': 'cpu', 'embedding_model': 'sentence-transformers/all-mpnet-base-v2', 'sd_webui_url': '', 'debug': 0 } # Allow some actions to run at the same time. text_generation_semaphore = asyncio.Semaphore(1) # Use same lock for streaming and generations. embedding_semaphore = asyncio.Semaphore(1) stt_semaphore = asyncio.Semaphore(1) io_semaphore = asyncio.Semaphore(1) small_tasks_semaphore = asyncio.Semaphore(5) def verify_api_key(authorization: str = Header(None)) -> None: expected_api_key = shared.args.api_key if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"): raise HTTPException(status_code=401, detail="Unauthorized") def verify_admin_key(authorization: str = Header(None)) -> None: expected_api_key = shared.args.admin_key if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"): raise HTTPException(status_code=401, detail="Unauthorized") app = FastAPI() check_key = [Depends(verify_api_key)] check_admin_key = [Depends(verify_admin_key)] # Configure CORS settings to allow all origins, methods, and headers app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) @app.options("/", dependencies=check_key) async def options_route(): return JSONResponse(content="OK") @app.post('/v1/completions', response_model=CompletionResponse, dependencies=check_key) async def openai_completions(request: Request, request_data: CompletionRequest): path = request.url.path is_legacy = "/generate" in path if request_data.stream: async def generator(): async with text_generation_semaphore: partial = functools.partial(OAIcompletions.stream_completions, to_dict(request_data), is_legacy=is_legacy) async for resp in generate_in_executor(partial): disconnected = await request.is_disconnected() if disconnected: break yield {"data": json.dumps(resp)} return EventSourceResponse(generator()) # SSE streaming else: async with text_generation_semaphore: partial = functools.partial(OAIcompletions.completions, to_dict(request_data), is_legacy=is_legacy) response = await run_in_executor(partial) return JSONResponse(response) @app.post('/v1/chat/completions', response_model=ChatCompletionResponse, dependencies=check_key) async def openai_chat_completions(request: Request, request_data: ChatCompletionRequest): path = request.url.path is_legacy = "/generate" in path if request_data.stream: async def generator(): async with text_generation_semaphore: partial = functools.partial(OAIcompletions.stream_chat_completions, to_dict(request_data), is_legacy=is_legacy) async for resp in generate_in_executor(partial): disconnected = await request.is_disconnected() if disconnected: break yield {"data": json.dumps(resp)} return EventSourceResponse(generator()) # SSE streaming else: async with text_generation_semaphore: partial = functools.partial(OAIcompletions.chat_completions, to_dict(request_data), is_legacy=is_legacy) response = await run_in_executor(partial) return JSONResponse(response) @app.get("/v1/models", dependencies=check_key) @app.get("/v1/models/{model}", dependencies=check_key) async def handle_models(request: Request): path = request.url.path is_list = request.url.path.split('?')[0].split('#')[0] == '/v1/models' if is_list: response = OAImodels.list_dummy_models() else: model_name = path[len('/v1/models/'):] response = OAImodels.model_info_dict(model_name) return JSONResponse(response) @app.get('/v1/billing/usage', dependencies=check_key) def handle_billing_usage(): ''' Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31 ''' return JSONResponse(content={"total_usage": 0}) @app.post('/v1/audio/transcriptions', response_model=TranscriptionsResponse, dependencies=check_key) async def handle_audio_transcription(request: Request, request_data: TranscriptionsRequest = Depends(TranscriptionsRequest.as_form)): r = sr.Recognizer() file = request_data.file audio_file = await file.read() audio_file = BytesIO(audio_file) audio_data = AudioSegment.from_file(audio_file) # Convert AudioSegment to raw data raw_data = audio_data.raw_data # Create AudioData object audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width) whisper_language = request_data.language whisper_model = request_data.model # Use the model from the form data if it exists, otherwise default to tiny transcription = {"text": ""} try: async with stt_semaphore: partial = functools.partial(r.recognize_whisper, audio_data, language=whisper_language, model=whisper_model) transcription["text"] = await run_in_executor(partial) except sr.UnknownValueError: logger.warning("Whisper could not understand audio") transcription["text"] = "Whisper could not understand audio UnknownValueError" except sr.RequestError as e: logger.warning("Could not request results from Whisper", e) transcription["text"] = "Whisper could not understand audio RequestError" return JSONResponse(content=transcription) @app.post('/v1/images/generations', response_model=ImageGenerationResponse, dependencies=check_key) async def handle_image_generation(request: Request, request_data: ImageGenerationRequest): if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')): raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.") prompt = request_data.prompt size = request_data.size response_format = request_data.response_format # or b64_json n = request_data.n # ignore the batch limits of max 10 partial = functools.partial(OAIimages.generations, prompt=prompt, size=size, response_format=response_format, n=n) response = await run_in_executor(partial) return JSONResponse(response) @app.post("/v1/embeddings", response_model=EmbeddingsResponse, dependencies=check_key) async def handle_embeddings(request: Request, request_data: EmbeddingsRequest): input = request_data.input if not input: raise HTTPException(status_code=400, detail="Missing required argument input") if type(input) is str: input = [input] async with embedding_semaphore: partial = functools.partial(OAIembeddings.embeddings, input, request_data.encoding_format) response = await run_in_executor(partial) return JSONResponse(response) @app.post("/v1/moderations", dependencies=check_key) async def handle_moderations(request: Request): body = await request.json() input = body["input"] if not input: raise HTTPException(status_code=400, detail="Missing required argument input") async with embedding_semaphore: partial = functools.partial(OAImoderations.moderations, input) response = await run_in_executor(partial) return JSONResponse(response) @app.post("/v1/internal/encode", response_model=EncodeResponse, dependencies=check_key) async def handle_token_encode(request_data: EncodeRequest): async with small_tasks_semaphore: partial = functools.partial(token_encode, request_data.text) response = await run_in_executor(partial) return JSONResponse(response) @app.post("/v1/internal/decode", response_model=DecodeResponse, dependencies=check_key) async def handle_token_decode(request_data: DecodeRequest): async with small_tasks_semaphore: partial = functools.partial(token_decode, request_data.tokens) response = await run_in_executor(partial) return JSONResponse(response) @app.post("/v1/internal/token-count", response_model=TokenCountResponse, dependencies=check_key) async def handle_token_count(request_data: EncodeRequest): async with small_tasks_semaphore: partial = functools.partial(token_count, request_data.text) response = await run_in_executor(partial) return JSONResponse(response) @app.post("/v1/internal/logits", response_model=LogitsResponse, dependencies=check_key) async def handle_logits(request_data: LogitsRequest): ''' Given a prompt, returns the top 50 most likely logits as a dict. The keys are the tokens, and the values are the probabilities. ''' async with small_tasks_semaphore: partial = functools.partial(OAIlogits._get_next_logits, to_dict(request_data)) response = await run_in_executor(partial) return JSONResponse(response) @app.post('/v1/internal/chat-prompt', response_model=ChatPromptResponse, dependencies=check_key) async def handle_chat_prompt(request: Request, request_data: ChatCompletionRequest): path = request.url.path is_legacy = "/generate" in path async with small_tasks_semaphore: # Run in executor as there are calls to get_encoded_length # which might slow down at really long contexts. partial = functools.partial(OAIcompletions.chat_completions_common, to_dict(request_data), is_legacy=is_legacy, prompt_only=True) generator = await run_in_executor(partial) response = deque(generator, maxlen=1).pop() return JSONResponse(response) @app.post("/v1/internal/stop-generation", dependencies=check_key) async def handle_stop_generation(request: Request): stop_everything_event() return JSONResponse(content="OK") @app.get("/v1/internal/model/info", response_model=ModelInfoResponse, dependencies=check_key) async def handle_model_info(): payload = OAImodels.get_current_model_info() return JSONResponse(content=payload) @app.get("/v1/internal/model/list", response_model=ModelListResponse, dependencies=check_admin_key) async def handle_list_models(): payload = OAImodels.list_models() return JSONResponse(content=payload) @app.post("/v1/internal/model/load", dependencies=check_admin_key) async def handle_load_model(request_data: LoadModelRequest): ''' This endpoint is experimental and may change in the future. The "args" parameter can be used to modify flags like "--load-in-4bit" or "--n-gpu-layers" before loading a model. Example: ``` "args": { "load_in_4bit": true, "n_gpu_layers": 12 } ``` Note that those settings will remain after loading the model. So you may need to change them back to load a second model. The "settings" parameter is also a dict but with keys for the shared.settings object. It can be used to modify the default instruction template like this: ``` "settings": { "instruction_template": "Alpaca" } ``` ''' try: async with io_semaphore: partial = functools.partial(OAImodels._load_model, to_dict(request_data)) await run_in_executor(partial) return JSONResponse(content="OK") except: traceback.print_exc() raise HTTPException(status_code=400, detail="Failed to load the model.") @app.post("/v1/internal/model/unload", dependencies=check_admin_key) async def handle_unload_model(): async with io_semaphore: await run_in_executor(unload_model) return JSONResponse(content="OK") @app.get("/v1/internal/lora/list", response_model=LoraListResponse, dependencies=check_admin_key) async def handle_list_loras(): response = OAImodels.list_loras() return JSONResponse(content=response) @app.post("/v1/internal/lora/load", dependencies=check_admin_key) async def handle_load_loras(request_data: LoadLorasRequest): try: async with io_semaphore: partial = functools.partial(OAImodels.load_loras, request_data.lora_names) await run_in_executor(partial) return JSONResponse(content="OK") except: traceback.print_exc() raise HTTPException(status_code=400, detail="Failed to apply the LoRA(s).") @app.post("/v1/internal/lora/unload", dependencies=check_admin_key) async def handle_unload_loras(): async with io_semaphore: await run_in_executor(OAImodels.unload_all_loras) return JSONResponse(content="OK") def run_server(): server_addr = '0.0.0.0' if shared.args.listen else '127.0.0.1' port = int(os.environ.get('OPENEDAI_PORT', shared.args.api_port)) ssl_certfile = os.environ.get('OPENEDAI_CERT_PATH', shared.args.ssl_certfile) ssl_keyfile = os.environ.get('OPENEDAI_KEY_PATH', shared.args.ssl_keyfile) if shared.args.public_api: def on_start(public_url: str): logger.info(f'OpenAI-compatible API URL:\n\n{public_url}\n') _start_cloudflared(port, shared.args.public_api_id, max_attempts=3, on_start=on_start) else: if ssl_keyfile and ssl_certfile: logger.info(f'OpenAI-compatible API URL:\n\nhttps://{server_addr}:{port}\n') else: logger.info(f'OpenAI-compatible API URL:\n\nhttp://{server_addr}:{port}\n') if shared.args.api_key: if not shared.args.admin_key: shared.args.admin_key = shared.args.api_key logger.info(f'OpenAI API key:\n\n{shared.args.api_key}\n') if shared.args.admin_key and shared.args.admin_key != shared.args.api_key: logger.info(f'OpenAI API admin key (for loading/unloading models):\n\n{shared.args.admin_key}\n') logging.getLogger("uvicorn.error").propagate = False uvicorn.run(app, host=server_addr, port=port, ssl_certfile=ssl_certfile, ssl_keyfile=ssl_keyfile) def setup(): if shared.args.nowebui: run_server() else: Thread(target=run_server, daemon=True).start()