import sys from pathlib import Path import accelerate import torch import modules.shared as shared sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) # 4-bit LLaMA def load_quantized(model_name, model_type): if model_type == 'llama': from llama import load_quant elif model_type == 'opt': from opt import load_quant else: print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported") exit() path_to_model = Path(f'models/{model_name}') pt_model = f'{model_name}-{shared.args.gptq_bits}bit.pt' # Try to find the .pt both in models/ and in the subfolder pt_path = None for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]: if path.exists(): pt_path = path if not pt_path: print(f"Could not find {pt_model}, exiting...") exit() model = load_quant(path_to_model, str(pt_path), shared.args.gptq_bits) # Multiple GPUs or GPU+CPU if shared.args.gpu_memory: max_memory = {} for i in range(len(shared.args.gpu_memory)): max_memory[i] = f"{shared.args.gpu_memory[i]}GiB" max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB" device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"]) model = accelerate.dispatch_model(model, device_map=device_map) # Single GPU else: model = model.to(torch.device('cuda:0')) return model