import os, time, types, torch from pathlib import Path import numpy as np np.set_printoptions(precision=4, suppress=True, linewidth=200) os.environ['RWKV_JIT_ON'] = '1' os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster) import repositories.ChatRWKV.v2.rwkv as rwkv from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS def load_RWKV_model(path): os.system("ls") model = RWKV(model=path.as_posix(), strategy='cuda fp16') out, state = model.forward([187, 510, 1563, 310, 247], None) # use 20B_tokenizer.json print(out.detach().cpu().numpy()) # get logits out, state = model.forward([187, 510], None) out, state = model.forward([1563], state) # RNN has state (use deepcopy if you want to clone it) out, state = model.forward([310, 247], state) print(out.detach().cpu().numpy()) # same result as above pipeline = PIPELINE(model, Path("repositories/ChatRWKV/20B_tokenizer.json").as_posix()) return pipeline