import os import re import time import glob import torch import gradio as gr import transformers from transformers import AutoTokenizer from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel #model_name = "bloomz-7b1-p3" #model_name = 'gpt-j-6B-float16' #model_name = "opt-6.7b" #model_name = 'opt-13b' model_name = "gpt4chan_model_float16" #model_name = 'galactica-6.7b' #model_name = 'gpt-neox-20b' #model_name = 'flan-t5' #model_name = 'OPT-13B-Erebus' loaded_preset = None def load_model(model_name): print(f"Loading {model_name}...") t0 = time.time() # Loading the model if os.path.exists(f"torch-dumps/{model_name}.pt"): print("Loading in .pt format...") model = torch.load(f"torch-dumps/{model_name}.pt").cuda() elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')): if any(size in model_name for size in ('13b', '20b', '30b')): model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True) else: model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() elif model_name in ['gpt-j-6B']: model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() elif model_name in ['flan-t5', 't5-large']: model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda() else: model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() # Loading the tokenizer if model_name.startswith('gpt4chan'): tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/") elif model_name in ['flan-t5']: tokenizer = T5Tokenizer.from_pretrained(f"models/{model_name}/") else: tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/") print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") return model, tokenizer # Removes empty replies from gpt4chan outputs def fix_gpt4chan(s): for i in range(10): s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) s = re.sub("--- [0-9]*\n *\n---", "---", s) s = re.sub("--- [0-9]*\n\n\n---", "---", s) return s def generate_reply(question, temperature, max_length, inference_settings, selected_model): global model, tokenizer, model_name, loaded_preset, preset if selected_model != model_name: model_name = selected_model model = None tokenier = None torch.cuda.empty_cache() model, tokenizer = load_model(model_name) if inference_settings != loaded_preset: with open(f'presets/{inference_settings}.txt', 'r') as infile: preset = infile.read() loaded_preset = inference_settings torch.cuda.empty_cache() input_text = question input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda() output = eval(f"model.generate(input_ids, {preset}).cuda()") reply = tokenizer.decode(output[0], skip_special_tokens=True) if model_name.startswith('gpt4chan'): reply = fix_gpt4chan(reply) return reply model, tokenizer = load_model(model_name) if model_name.startswith('gpt4chan'): default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n" else: default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:" interface = gr.Interface( generate_reply, inputs=[ gr.Textbox(value=default_text, lines=15), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7), gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200), gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"), gr.Dropdown(choices=sorted(set(map(lambda x : x.split('/')[-1].replace('.pt', ''), glob.glob("models/*") + glob.glob("torch-dumps/*")))), value=model_name), ], outputs=[ gr.Textbox(placeholder="", lines=15), ], title="Text generation lab", description=f"Generate text using Large Language Models.", ) interface.launch(share=False, server_name="0.0.0.0")