import time import re import torch import gradio as gr import transformers from transformers import AutoTokenizer from transformers import GPTJForCausalLM, AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, T5Tokenizer, T5ForConditionalGeneration, GPTJModel, AutoModel #model_name = "bloomz-7b1-p3" #model_name = 'gpt-j-6B-float16' #model_name = "opt-6.7b" #model_name = 'opt-13b' #model_name = "gpt4chan_model_float16" model_name = 'galactica-6.7b' #model_name = 'gpt-neox-20b' #model_name = 'flan-t5' #model_name = 'OPT-13B-Erebus' def load_model(model_name): print(f"Loading {model_name}") t0 = time.time() if model_name in ['gpt-neox-20b', 'opt-13b', 'OPT-13B-Erebus']: model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", device_map='auto', load_in_8bit=True) elif model_name in ['gpt-j-6B']: model = AutoModelForCausalLM.from_pretrained(f"models/{model_name}", low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() elif model_name in ['flan-t5']: model = T5ForConditionalGeneration.from_pretrained(f"models/{model_name}").cuda() else: model = torch.load(f"torch-dumps/{model_name}.pt").cuda() if model_name in ['gpt4chan_model_float16']: tokenizer = AutoTokenizer.from_pretrained("models/gpt-j-6B/") elif model_name in ['flan-t5']: tokenizer = T5Tokenizer.from_pretrained(f"models/{model_name}/") else: tokenizer = AutoTokenizer.from_pretrained(f"models/{model_name}/") print(f"Loaded the model in {time.time()-t0} seconds.") return model, tokenizer def fix_gpt4chan(s): for i in range(10): s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) s = re.sub("--- [0-9]*\n *\n---", "---", s) s = re.sub("--- [0-9]*\n\n\n---", "---", s) return s def fn(question, temperature, max_length, inference_settings, selected_model): global model, tokenizer, model_name if selected_model != model_name: model_name = selected_model model = None tokenier = None torch.cuda.empty_cache() model, tokenizer = load_model(model_name) torch.cuda.empty_cache() input_text = question input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda() if inference_settings == 'Default': output = model.generate( input_ids, do_sample=True, max_new_tokens=max_length, #max_length=max_length+len(input_ids[0]), top_p=1, typical_p=0.3, temperature=temperature, ).cuda() elif inference_settings == 'Verbose': output = model.generate( input_ids, num_beams=10, min_length=max_length, max_new_tokens=max_length, length_penalty =1.4, no_repeat_ngram_size=2, early_stopping=True, temperature=0.7, top_k=150, top_p=0.92, repetition_penalty=4.5, ).cuda() reply = tokenizer.decode(output[0], skip_special_tokens=True) if model_name.startswith('gpt4chan'): reply = fix_gpt4chan(reply) return reply model, tokenizer = load_model(model_name) if model_name.startswith('gpt4chan'): default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n" else: default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:" interface = gr.Interface( fn, inputs=[ gr.Textbox(value=default_text, lines=15), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7), gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200), gr.Dropdown(choices=["Default", "Verbose"], value="Default"), gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name), ], outputs=[ gr.Textbox(placeholder="", lines=15), ], title="Text generation lab", description=f"Generate text using Large Language Models. Currently working with {model_name}", ) interface.launch(share=False, server_name="0.0.0.0")