import os import time import types from pathlib import Path import numpy as np import torch import modules.shared as shared np.set_printoptions(precision=4, suppress=True, linewidth=200) os.environ['RWKV_JIT_ON'] = '1' os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS class RWKVModel: def __init__(self): pass @classmethod def from_pretrained(self, path, dtype="fp16", device="cuda"): tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json") model = RWKV(model=path.as_posix(), strategy=f'{device} {dtype}') pipeline = PIPELINE(model, tokenizer_path.as_posix()) result = self() result.pipeline = pipeline return result def generate(self, context, token_count=20, temperature=1, top_p=1, alpha_frequency=0.25, alpha_presence=0.25, token_ban=[0], token_stop=[], callback=None): args = PIPELINE_ARGS( temperature = temperature, top_p = top_p, alpha_frequency = alpha_frequency, # Frequency Penalty (as in GPT-3) alpha_presence = alpha_presence, # Presence Penalty (as in GPT-3) token_ban = token_ban, # ban the generation of some tokens token_stop = token_stop ) return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)