import inspect import re import sys from pathlib import Path import accelerate import torch import transformers from transformers import AutoConfig, AutoModelForCausalLM import modules.shared as shared sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) import llama_inference_offload from modelutils import find_layers from quant import make_quant def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head'], kernel_switch_threshold=128): def noop(*args, **kwargs): pass config = AutoConfig.from_pretrained(model) torch.nn.init.kaiming_uniform_ = noop torch.nn.init.uniform_ = noop torch.nn.init.normal_ = noop torch.set_default_dtype(torch.half) transformers.modeling_utils._init_weights = False torch.set_default_dtype(torch.half) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float) model = model.eval() layers = find_layers(model) for name in exclude_layers: if name in layers: del layers[name] gptq_args = inspect.getfullargspec(make_quant).args make_quant_kwargs = { 'module': model, 'names': layers, 'bits': wbits, } if 'groupsize' in gptq_args: make_quant_kwargs['groupsize'] = groupsize if 'faster' in gptq_args: make_quant_kwargs['faster'] = faster_kernel if 'kernel_switch_threshold' in gptq_args: make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold make_quant(**make_quant_kwargs) del layers print('Loading model ...') if checkpoint.endswith('.safetensors'): from safetensors.torch import load_file as safe_load model.load_state_dict(safe_load(checkpoint), strict=False) else: model.load_state_dict(torch.load(checkpoint), strict=False) try: from quant import autotune_warmup, make_quant_attn # triton branch make_quant_attn(model) if shared.args.warmup_autotune: autotune_warmup(model) except ImportError: # not triton branch pass model.seqlen = 2048 print('Done.') return model def load_quantized(model_name): if not shared.args.model_type: # Try to determine model type from model name name = model_name.lower() if any((k in name for k in ['llama', 'alpaca', 'vicuna'])): model_type = 'llama' elif any((k in name for k in ['opt-', 'galactica'])): model_type = 'opt' elif any((k in name for k in ['gpt-j', 'pygmalion-6b'])): model_type = 'gptj' else: print("Can't determine model type from model name. Please specify it manually using --model_type " "argument") exit() else: model_type = shared.args.model_type.lower() if shared.args.pre_layer and model_type == 'llama': load_quant = llama_inference_offload.load_quant elif model_type in ('llama', 'opt', 'gptj'): if shared.args.pre_layer: print("Warning: ignoring --pre_layer because it only works for llama model type.") load_quant = _load_quant else: print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") exit() # Now we are going to try to locate the quantized model file. I think it's cleaner and supports the new name containing groupsize path_to_model = Path(f'{shared.args.model_dir}/{model_name}') pt_path = None priority_name_list = [ Path(f'{shared.args.model_dir}/{model_name}/{shared.args.wbits}bit-{shared.args.groupsize}g.safetensors'), Path(f'{shared.args.model_dir}/{model_name}/{shared.args.wbits}bit-{shared.args.groupsize}g.pt'), Path(f'{shared.args.model_dir}/{model_name}/{shared.args.wbits}bit.safetensors'), Path(f'{shared.args.model_dir}/{model_name}/{shared.args.wbits}bit.pt'), Path(f'{shared.args.model_dir}/{model_name}-{shared.args.wbits}bit-{shared.args.groupsize}g.safetensors'), Path(f'{shared.args.model_dir}/{model_name}-{shared.args.wbits}bit-{shared.args.groupsize}g.pt'), Path(f'{shared.args.model_dir}/{model_name}-{shared.args.wbits}bit.safetensors'), Path(f'{shared.args.model_dir}/{model_name}-{shared.args.wbits}bit.pt'), ] for path in priority_name_list: if path.exists(): pt_path = path break # For compatibility, do we really need this? if not pt_path: path_to_model = Path(f'{shared.args.model_dir}/{model_name}') found_pts = list(path_to_model.glob("*.pt")) found_safetensors = list(path_to_model.glob("*.safetensors")) pt_path = None if len(found_pts) > 0: pt_path = found_pts[-1] elif len(found_safetensors) > 0: pt_path = found_safetensors[-1] else: if path_to_model.name.lower().startswith('llama-7b'): pt_model = f'llama-7b-{shared.args.wbits}bit' elif path_to_model.name.lower().startswith('llama-13b'): pt_model = f'llama-13b-{shared.args.wbits}bit' elif path_to_model.name.lower().startswith('llama-30b'): pt_model = f'llama-30b-{shared.args.wbits}bit' elif path_to_model.name.lower().startswith('llama-65b'): pt_model = f'llama-65b-{shared.args.wbits}bit' else: pt_model = f'{model_name}-{shared.args.wbits}bit' # Try to find the .safetensors or .pt both in the model dir and in the subfolder for path in [Path(p + ext) for ext in ['.safetensors', '.pt'] for p in [f"{shared.args.model_dir}/{pt_model}", f"{path_to_model}/{pt_model}"]]: if path.exists(): pt_path = path break if not pt_path: print("Could not find the quantized model in .pt or .safetensors format, exiting...") exit() else: print(f"Found the following quantized model: {pt_path}") # qwopqwop200's offload if model_type == 'llama' and shared.args.pre_layer: model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer) else: threshold = False if model_type == 'gptj' else 128 model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) # accelerate offload (doesn't work properly) if shared.args.gpu_memory: memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' max_memory = {} for i in range(len(memory_map)): max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] max_memory['cpu'] = max_cpu_memory device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) print("Using the following device map for the 4-bit model:", device_map) # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) # No offload elif not shared.args.cpu: model = model.to(torch.device('cuda:0')) return model