import re import time import glob from sys import exit import torch import argparse import json from pathlib import Path import gradio as gr import transformers from html_generator import * from transformers import AutoTokenizer, AutoModelForCausalLM import warnings import gc from tqdm import tqdm transformers.logging.set_verbosity_error() parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, help='Name of the model to load by default.') parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.') parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode.') parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file profile.png or profile.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture.') parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.') parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.') parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.') parser.add_argument('--max-gpu-memory', type=int, help='Maximum memory in GiB to allocate to the GPU when loading the model. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.') parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time. This slightly improves the text generation performance.') parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example.') parser.add_argument('--no-listen', action='store_true', help='Make the web UI unreachable from your local network.') parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.') args = parser.parse_args() loaded_preset = None available_models = sorted(set([item.replace('.pt', '') for item in map(lambda x : str(x.name), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*'))) if not item.endswith('.txt')]), key=str.lower) available_presets = sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower) available_characters = sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower) settings = { 'max_new_tokens': 200, 'max_new_tokens_min': 1, 'max_new_tokens_max': 2000, 'preset': 'NovelAI-Sphinx Moth', 'name1': 'Person 1', 'name2': 'Person 2', 'context': 'This is a conversation between two people.', 'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:', 'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n', 'stop_at_newline': True, 'history_size': 8, 'history_size_min': 0, 'history_size_max': 64, 'preset_pygmalion': 'Pygmalion', 'name1_pygmalion': 'You', 'name2_pygmalion': 'Kawaii', 'context_pygmalion': 'This is a conversation between two people.\n', 'stop_at_newline_pygmalion': False, } if args.settings is not None and Path(args.settings).exists(): with open(Path(args.settings), 'r') as f: new_settings = json.load(f) for item in new_settings: if item in settings: settings[item] = new_settings[item] def load_model(model_name): print(f"Loading {model_name}...") t0 = time.time() # Default settings if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.max_gpu_memory is not None): if Path(f"torch-dumps/{model_name}.pt").exists(): print("Loading in .pt format...") model = torch.load(Path(f"torch-dumps/{model_name}.pt")) elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')): model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True) else: model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() # Custom else: settings = ["low_cpu_mem_usage=True"] command = "AutoModelForCausalLM.from_pretrained" if args.cpu: settings.append("torch_dtype=torch.float32") else: settings.append("device_map='auto'") if args.max_gpu_memory is not None: settings.append(f"max_memory={{0: '{args.max_gpu_memory}GiB', 'cpu': '99GiB'}}") if args.disk: settings.append("offload_folder='cache'") if args.load_in_8bit: settings.append("load_in_8bit=True") else: settings.append("torch_dtype=torch.float16") settings = ', '.join(set(settings)) command = f"{command}(Path(f'models/{model_name}'), {settings})" model = eval(command) # Loading the tokenizer if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists(): tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/")) else: tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/")) tokenizer.truncation_side = 'left' print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") return model, tokenizer # Removes empty replies from gpt4chan outputs def fix_gpt4chan(s): for i in range(10): s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) s = re.sub("--- [0-9]*\n *\n---", "---", s) s = re.sub("--- [0-9]*\n\n\n---", "---", s) return s # Fix the LaTeX equations in galactica def fix_galactica(s): s = s.replace(r'\[', r'$') s = s.replace(r'\]', r'$') s = s.replace(r'\(', r'$') s = s.replace(r'\)', r'$') s = s.replace(r'$$', r'$') return s def encode(prompt, tokens): if not args.cpu: torch.cuda.empty_cache() input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=2048-tokens).cuda() else: input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=2048-tokens) return input_ids def decode(output_ids): reply = tokenizer.decode(output_ids, skip_special_tokens=True) reply = reply.replace(r'<|endoftext|>', '') return reply def formatted_outputs(reply, model_name): if not (args.chat or args.cai_chat): if model_name.lower().startswith('galactica'): reply = fix_galactica(reply) return reply, reply, generate_basic_html(reply) elif model_name.lower().startswith('gpt4chan'): reply = fix_gpt4chan(reply) return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply) else: return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply) else: return reply def generate_reply(question, tokens, inference_settings, selected_model, eos_token=None): global model, tokenizer, model_name, loaded_preset, preset if selected_model != model_name: model_name = selected_model model = None tokenizer = None if not args.cpu: gc.collect() torch.cuda.empty_cache() model, tokenizer = load_model(model_name) if inference_settings != loaded_preset: with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile: preset = infile.read() loaded_preset = inference_settings cuda = "" if args.cpu else ".cuda()" n = None if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1] input_ids = encode(question, tokens) # Generate the entire reply at once if args.no_stream: output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}") reply = decode(output[0]) yield formatted_outputs(reply, model_name) # Generate the reply 1 token at a time else: yield formatted_outputs(question, model_name) preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=1') for i in tqdm(range(tokens)): output = eval(f"model.generate(input_ids, {preset}){cuda}") reply = decode(output[0]) if eos_token is not None and reply[-1] == eos_token: break yield formatted_outputs(reply, model_name) input_ids = output # Choosing the default model if args.model is not None: model_name = args.model else: if len(available_models) == 0: print("No models are available! Please download at least one.") exit(0) elif len(available_models) == 1: i = 0 else: print("The following models are available:\n") for i,model in enumerate(available_models): print(f"{i+1}. {model}") print(f"\nWhich one do you want to load? 1-{len(available_models)}\n") i = int(input())-1 print() model_name = available_models[i] model, tokenizer = load_model(model_name) # UI settings if model_name.lower().startswith('gpt4chan'): default_text = settings['prompt_gpt4chan'] else: default_text = settings['prompt'] description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n" css = ".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem}" if args.chat or args.cai_chat: history = [] character = None # This gets the new line characters right. def clean_chat_message(text): text = text.replace('\n', '\n\n') text = re.sub(r"\n{3,}", "\n\n", text) text = text.strip() return text def generate_chat_prompt(text, tokens, name1, name2, context, history_size): text = clean_chat_message(text) rows = [f"{context.strip()}\n"] i = len(history)-1 count = 0 while i >= 0 and len(encode(''.join(rows), tokens)[0]) < 2048-tokens: rows.insert(1, f"{name2}: {history[i][1].strip()}\n") count += 1 if not (i == 0 and len(history[i][0]) == 0): rows.insert(1, f"{name1}: {history[i][0].strip()}\n") count += 1 i -= 1 if history_size != 0 and count >= history_size: break rows.append(f"{name1}: {text}\n") rows.append(f"{name2}:") while len(rows) > 3 and len(encode(''.join(rows), tokens)[0]) >= 2048-tokens: rows.pop(1) rows.pop(1) question = ''.join(rows) return question def chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size): question = generate_chat_prompt(text, tokens, name1, name2, context, history_size) history.append(['', '']) eos_token = '\n' if check else None for reply in generate_reply(question, tokens, inference_settings, selected_model, eos_token=eos_token): next_character_found = False previous_idx = [m.start() for m in re.finditer(f"(^|\n){name2}:", question)] idx = [m.start() for m in re.finditer(f"(^|\n){name2}:", reply)] idx = idx[len(previous_idx)-1] reply = reply[idx + len(f"\n{name2}:"):] if check: reply = reply.split('\n')[0].strip() else: idx = reply.find(f"\n{name1}:") if idx != -1: reply = reply[:idx] next_character_found = True reply = clean_chat_message(reply) history[-1] = [text, reply] if next_character_found: break # Prevent the chat log from flashing if something like "\nYo" is generated just # before "\nYou:" is completed tmp = f"\n{name1}:" next_character_substring_found = False for j in range(1, len(tmp)): if reply[-j:] == tmp[:j]: next_character_substring_found = True if not next_character_substring_found: yield history yield history def cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size): for history in chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size): yield generate_chat_html(history, name1, name2, character) def remove_last_message(name1, name2): history.pop() if args.cai_chat: return generate_chat_html(history, name1, name2, character) else: return history def clear(): global history history = [] def clear_html(): return generate_chat_html([], "", "", character) def redraw_html(name1, name2): global history return generate_chat_html(history, name1, name2, character) def save_history(): if not Path('logs').exists(): Path('logs').mkdir() with open(Path('logs/conversation.json'), 'w') as f: f.write(json.dumps({'data': history})) return Path('logs/conversation.json') def load_history(file): global history history = json.loads(file.decode('utf-8'))['data'] def load_character(_character, name1, name2): global history, character context = "" history = [] if _character != 'None': character = _character with open(Path(f'characters/{_character}.json'), 'r') as f: data = json.loads(f.read()) name2 = data['char_name'] if 'char_persona' in data and data['char_persona'] != '': context += f"{data['char_name']}'s Persona: {data['char_persona']}\n" if 'world_scenario' in data and data['world_scenario'] != '': context += f"Scenario: {data['world_scenario']}\n" context = f"{context.strip()}\n\n" if 'example_dialogue' in data and data['example_dialogue'] != '': context += f"{data['example_dialogue'].strip()}\n" if 'char_greeting' in data: history = [['', data['char_greeting']]] else: character = None context = settings['context_pygmalion'] name2 = settings['name2_pygmalion'] if args.cai_chat: return name2, context, generate_chat_html(history, name1, name2, character) else: return name2, context, history suffix = '_pygmalion' if 'pygmalion' in model_name.lower() else '' with gr.Blocks(css=css+".h-\[40vh\] {height: 66.67vh} .gradio-container {max-width: 800px; margin-left: auto; margin-right: auto}", analytics_enabled=False) as interface: if args.cai_chat: display1 = gr.HTML(value=generate_chat_html([], "", "", character)) else: display1 = gr.Chatbot() textbox = gr.Textbox(lines=2, label='Input') btn = gr.Button("Generate") with gr.Row(): btn2 = gr.Button("Clear history") stop = gr.Button("Stop") btn3 = gr.Button("Remove last message") with gr.Row(): with gr.Column(): length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens']) model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model') with gr.Column(): history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size (0 for no limit)', value=settings['history_size']) preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'], label='Settings preset') name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name') name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name') context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context') with gr.Row(): character_menu = gr.Dropdown(choices=["None"]+available_characters, value="None", label='Character') with gr.Row(): check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?') with gr.Row(): with gr.Column(): gr.Markdown("Upload chat history") upload = gr.File(type='binary') with gr.Column(): gr.Markdown("Download chat history") save_btn = gr.Button(value="Click me") download = gr.File() input_params = [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check, history_size_slider] if args.cai_chat: gen_event = btn.click(cai_chatbot_wrapper, input_params, display1, show_progress=args.no_stream, api_name="textgen") gen_event2 = textbox.submit(cai_chatbot_wrapper, input_params, display1, show_progress=args.no_stream) btn2.click(clear_html, [], display1, show_progress=False) else: gen_event = btn.click(chatbot_wrapper, input_params, display1, show_progress=args.no_stream, api_name="textgen") gen_event2 = textbox.submit(chatbot_wrapper, input_params, display1, show_progress=args.no_stream) btn2.click(lambda x: "", display1, display1, show_progress=False) btn2.click(clear) btn3.click(remove_last_message, [name1, name2], display1, show_progress=False) btn.click(lambda x: "", textbox, textbox, show_progress=False) textbox.submit(lambda x: "", textbox, textbox, show_progress=False) stop.click(None, None, None, cancels=[gen_event, gen_event2]) save_btn.click(save_history, inputs=[], outputs=[download]) upload.upload(load_history, [upload], []) character_menu.change(load_character, [character_menu, name1, name2], [name2, context, display1]) if args.cai_chat: upload.upload(redraw_html, [name1, name2], [display1]) else: upload.upload(lambda : history, [], [display1]) elif args.notebook: with gr.Blocks(css=css, analytics_enabled=False) as interface: gr.Markdown(description) with gr.Tab('Raw'): textbox = gr.Textbox(value=default_text, lines=23) with gr.Tab('Markdown'): markdown = gr.Markdown() with gr.Tab('HTML'): html = gr.HTML() btn = gr.Button("Generate") stop = gr.Button("Stop") length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens']) with gr.Row(): with gr.Column(): model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model') with gr.Column(): preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset') gen_event = btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen") gen_event2 = textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream) stop.click(None, None, None, cancels=[gen_event, gen_event2]) else: with gr.Blocks(css=css, analytics_enabled=False) as interface: gr.Markdown(description) with gr.Row(): with gr.Column(): textbox = gr.Textbox(value=default_text, lines=15, label='Input') length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens']) preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Settings preset') model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model') btn = gr.Button("Generate") with gr.Row(): with gr.Column(): cont = gr.Button("Continue") with gr.Column(): stop = gr.Button("Stop") with gr.Column(): with gr.Tab('Raw'): output_textbox = gr.Textbox(lines=15, label='Output') with gr.Tab('Markdown'): markdown = gr.Markdown() with gr.Tab('HTML'): html = gr.HTML() gen_event = btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen") gen_event2 = textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream) cont_event = cont.click(generate_reply, [output_textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream) stop.click(None, None, None, cancels=[gen_event, gen_event2, cont_event]) interface.queue() if args.no_listen: interface.launch(share=args.share) else: interface.launch(share=args.share, server_name="0.0.0.0")