text-generation-webui/modules/llama_cpp_python_hijack.py
2024-07-22 12:02:25 -07:00

116 lines
3.5 KiB
Python

import importlib
import platform
from typing import Sequence
from tqdm import tqdm
from modules import shared
from modules.cache_utils import process_llamacpp_cache
imported_module = None
def llama_cpp_lib():
global imported_module
# Determine the platform
is_macos = platform.system() == 'Darwin'
# Define the library names based on the platform
if is_macos:
lib_names = [
(None, 'llama_cpp')
]
else:
lib_names = [
('cpu', 'llama_cpp'),
('tensorcores', 'llama_cpp_cuda_tensorcores'),
(None, 'llama_cpp_cuda'),
(None, 'llama_cpp')
]
for arg, lib_name in lib_names:
should_import = (arg is None or getattr(shared.args, arg))
if should_import:
if imported_module and imported_module != lib_name:
# Conflict detected, raise an exception
raise Exception(f"Cannot import `{lib_name}` because `{imported_module}` is already imported. Switching to a different version of llama-cpp-python currently requires a server restart.")
try:
return_lib = importlib.import_module(lib_name)
imported_module = lib_name
monkey_patch_llama_cpp_python(return_lib)
return return_lib
except ImportError:
continue
return None
def eval_with_progress(self, tokens: Sequence[int]):
"""
A copy of
https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama.py
with tqdm to show prompt processing progress.
"""
assert self._ctx.ctx is not None
assert self._batch.batch is not None
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
if len(tokens) > 1:
progress_bar = tqdm(range(0, len(tokens), self.n_batch), desc="Prompt evaluation", leave=False)
else:
progress_bar = range(0, len(tokens), self.n_batch)
for i in progress_bar:
batch = tokens[i : min(len(tokens), i + self.n_batch)]
n_past = self.n_tokens
n_tokens = len(batch)
self._batch.set_batch(
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
)
self._ctx.decode(self._batch)
# Save tokens
self.input_ids[n_past : n_past + n_tokens] = batch
# Save logits
if self.context_params.logits_all:
rows = n_tokens
cols = self._n_vocab
logits = self._ctx.get_logits()[: rows * cols]
self.scores[n_past : n_past + n_tokens, :].reshape(-1)[: :] = logits
else:
rows = 1
cols = self._n_vocab
logits = self._ctx.get_logits()[: rows * cols]
self.scores[n_past + n_tokens - 1, :].reshape(-1)[: :] = logits
# Update n_tokens
self.n_tokens += n_tokens
def monkey_patch_llama_cpp_python(lib):
if getattr(lib.Llama, '_is_patched', False):
# If the patch is already applied, do nothing
return
def my_generate(self, *args, **kwargs):
if shared.args.streaming_llm:
new_sequence = args[0]
past_sequence = self._input_ids
# Do the cache trimming for StreamingLLM
process_llamacpp_cache(self, new_sequence, past_sequence)
for output in self.original_generate(*args, **kwargs):
yield output
lib.Llama.eval = eval_with_progress
lib.Llama.original_generate = lib.Llama.generate
lib.Llama.generate = my_generate
# Set the flag to indicate that the patch has been applied
lib.Llama._is_patched = True