text-generation-webui/server.py
2023-01-09 19:05:36 -03:00

240 lines
11 KiB
Python

import re
import time
import glob
from sys import exit
import torch
import argparse
from pathlib import Path
import gradio as gr
import transformers
from html_generator import *
from transformers import AutoTokenizer, T5Tokenizer
from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
parser.add_argument('--listen', action='store_true', help='Makes the webui reachable from your local network.')
args = parser.parse_args()
loaded_preset = None
available_models = sorted(set(map(lambda x : str(x.name).replace('.pt', ''), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*')))))
available_models = [item for item in available_models if not item.endswith('.txt')]
available_presets = sorted(set(map(lambda x : str(x.name).split('.')[0], list(Path('presets').glob('*.txt')))))
def load_model(model_name):
print(f"Loading {model_name}...")
t0 = time.time()
# Loading the model
if not args.cpu and Path(f"torch-dumps/{model_name}.pt").exists():
print("Loading in .pt format...")
model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
elif model_name in ['flan-t5', 't5-large']:
if args.cpu:
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}"))
else:
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
else:
if args.cpu:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float32)
else:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
# Loading the tokenizer
if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
elif model_name in ['flan-t5', 't5-large']:
tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
else:
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
for i in range(10):
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
s = re.sub("--- [0-9]*\n *\n---", "---", s)
s = re.sub("--- [0-9]*\n\n\n---", "---", s)
return s
def fix_galactica(s):
s = s.replace(r'\[', r'$')
s = s.replace(r'\]', r'$')
s = s.replace(r'\(', r'$')
s = s.replace(r'\)', r'$')
s = s.replace(r'$$', r'$')
return s
def generate_reply(question, temperature, max_length, inference_settings, selected_model, eos_token=None):
global model, tokenizer, model_name, loaded_preset, preset
if selected_model != model_name:
model_name = selected_model
model = None
tokenizer = None
if not args.cpu:
torch.cuda.empty_cache()
model, tokenizer = load_model(model_name)
if inference_settings != loaded_preset:
with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
preset = infile.read()
loaded_preset = inference_settings
if not args.cpu:
torch.cuda.empty_cache()
input_ids = tokenizer.encode(str(question), return_tensors='pt').cuda()
cuda = ".cuda()"
else:
input_ids = tokenizer.encode(str(question), return_tensors='pt')
cuda = ""
if eos_token is None:
output = eval(f"model.generate(input_ids, {preset}){cuda}")
else:
n = tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
output = eval(f"model.generate(input_ids, eos_token_id={n}, {preset}){cuda}")
reply = tokenizer.decode(output[0], skip_special_tokens=True)
if model_name.lower().startswith('galactica'):
reply = fix_galactica(reply)
return reply, reply, 'Only applicable for gpt4chan.'
elif model_name.lower().startswith('gpt4chan'):
reply = fix_gpt4chan(reply)
return reply, 'Only applicable for galactica models.', generate_html(reply)
else:
return reply, 'Only applicable for galactica models.', 'Only applicable for gpt4chan.'
# Choosing the default model
if args.model is not None:
model_name = args.model
else:
if len(available_models) == 0:
print("No models are available! Please download at least one.")
exit(0)
elif len(available_models) == 1:
i = 0
else:
print("The following models are available:\n")
for i,model in enumerate(available_models):
print(f"{i+1}. {model}")
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
i = int(input())-1
print()
model_name = available_models[i]
model, tokenizer = load_model(model_name)
# UI settings
if model_name.lower().startswith('gpt4chan'):
default_text = "-----\n--- 865467536\nInput text\n--- 865467537\n"
else:
default_text = "Common sense questions and answers\n\nQuestion: \nFactual answer:"
description = f"""
# Text generation lab
Generate text using Large Language Models.
"""
css=".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem}"
if args.notebook:
with gr.Blocks(css=css, analytics_enabled=False) as interface:
gr.Markdown(description)
with gr.Tab('Raw'):
textbox = gr.Textbox(value=default_text, lines=23)
with gr.Tab('Markdown'):
markdown = gr.Markdown()
with gr.Tab('HTML'):
html = gr.HTML()
btn = gr.Button("Generate")
with gr.Row():
with gr.Column():
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
with gr.Column():
preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=True)
textbox.submit(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=True)
elif args.chat:
history = []
def chatbot(text, temperature, max_length, inference_settings, selected_model, name1, name2, context):
question = context+'\n\n'
for i in range(len(history)):
question += f"{name1}: {history[i][0][3:-5].strip()}\n"
question += f"{name2}: {history[i][1][3:-5].strip()}\n"
question += f"{name1}: {text.strip()}\n"
question += f"{name2}:"
reply = generate_reply(question, temperature, max_length, inference_settings, selected_model, eos_token='\n')[0]
reply = reply[len(question):].split('\n')[0].strip()
history.append((text, reply))
return history
def clear():
global history
history = []
with gr.Blocks(css=css+".h-\[40vh\] {height: 50vh}", analytics_enabled=False) as interface:
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
with gr.Column():
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
name1 = gr.Textbox(value='Person 1', lines=1, label='Your name')
name2 = gr.Textbox(value='Person 2', lines=1, label='Bot\'s name')
context = gr.Textbox(value='This is a conversation between two people.', lines=2, label='Context')
with gr.Column():
display1 = gr.Chatbot()
textbox = gr.Textbox(lines=2, label='Input')
btn = gr.Button("Generate")
btn2 = gr.Button("Clear history")
btn.click(chatbot, [textbox, temp_slider, length_slider, preset_menu, model_menu, name1, name2, context], display1, show_progress=True)
textbox.submit(chatbot, [textbox, temp_slider, length_slider, preset_menu, model_menu, name1, name2, context], display1, show_progress=True)
btn2.click(clear)
btn.click(lambda x: "", textbox, textbox, show_progress=False)
textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
btn2.click(lambda x: "", display1, display1)
else:
with gr.Blocks(css=css, analytics_enabled=False) as interface:
gr.Markdown(description)
with gr.Row():
with gr.Column():
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7)
length_slider = gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200)
preset_menu = gr.Dropdown(choices=available_presets, value="NovelAI-Sphinx Moth", label='Preset')
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
btn = gr.Button("Generate")
with gr.Column():
with gr.Tab('Raw'):
output_textbox = gr.Textbox(value=default_text, lines=15, label='Output')
with gr.Tab('Markdown'):
markdown = gr.Markdown()
with gr.Tab('HTML'):
html = gr.HTML()
btn.click(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=True)
textbox.submit(generate_reply, [textbox, temp_slider, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=True)
if args.listen:
interface.launch(share=False, server_name="0.0.0.0")
else:
interface.launch(share=False)