text-generation-webui/modules/models.py
2023-06-05 15:41:48 -03:00

370 lines
14 KiB
Python

import gc
import json
import os
import re
import time
import zipfile
from pathlib import Path
import numpy as np
import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoModelForSeq2SeqLM, AutoTokenizer,
BitsAndBytesConfig, LlamaTokenizer)
import modules.shared as shared
from modules import llama_attn_hijack, sampler_hijack
from modules.logging_colors import logger
transformers.logging.set_verbosity_error()
local_rank = None
if shared.args.deepspeed:
import deepspeed
from transformers.deepspeed import (HfDeepSpeedConfig,
is_deepspeed_zero3_enabled)
from modules.deepspeed_parameters import generate_ds_config
# Distributed setup
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
torch.cuda.set_device(local_rank)
deepspeed.init_distributed()
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
sampler_hijack.hijack_samplers()
# Some models require special treatment in various parts of the code.
# This function detects those models
def find_model_type(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
return 'None'
model_name_lower = model_name.lower()
if re.match('.*rwkv.*\.pth', model_name_lower):
return 'rwkv'
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0:
return 'llamacpp'
elif re.match('.*ggml.*\.bin', model_name_lower):
return 'llamacpp'
elif 'chatglm' in model_name_lower:
return 'chatglm'
elif 'galactica' in model_name_lower:
return 'galactica'
elif 'llava' in model_name_lower:
return 'llava'
elif 'oasst' in model_name_lower:
return 'oasst'
elif any((k in model_name_lower for k in ['gpt4chan', 'gpt-4chan'])):
return 'gpt4chan'
else:
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
# Not a "catch all", but fairly accurate
if config.to_dict().get("is_encoder_decoder", False):
return 'HF_seq2seq'
else:
return 'HF_generic'
def load_model(model_name):
logger.info(f"Loading {model_name}...")
t0 = time.time()
shared.model_type = find_model_type(model_name)
if shared.model_type == 'None':
logger.error('The path to the model does not exist. Exiting.')
return None, None
if shared.args.gptq_for_llama:
load_func = GPTQ_loader
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or shared.args.wbits > 0:
load_func = AutoGPTQ_loader
elif shared.model_type == 'llamacpp':
load_func = llamacpp_loader
elif shared.model_type == 'rwkv':
load_func = RWKV_loader
elif shared.args.flexgen:
load_func = flexgen_loader
else:
load_func = huggingface_loader
output = load_func(model_name)
if type(output) is tuple:
model, tokenizer = output
else:
model = output
if model is None:
return None, None
else:
tokenizer = load_tokenizer(model_name, model)
# Hijack attention with xformers
if any((shared.args.xformers, shared.args.sdp_attention)):
llama_attn_hijack.hijack_llama_attention()
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n")
return model, tokenizer
def load_tokenizer(model_name, model):
tokenizer = None
if shared.model_type == 'gpt4chan' and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))
elif type(model) is transformers.LlamaForCausalLM or "LlamaGPTQForCausalLM" in str(type(model)):
# Try to load an universal LLaMA tokenizer
if shared.model_type not in ['llava', 'oasst']:
for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]:
if p.exists():
logger.info(f"Loading the universal LLaMA tokenizer from {p}...")
tokenizer = LlamaTokenizer.from_pretrained(p, clean_up_tokenization_spaces=True)
return tokenizer
# Otherwise, load it from the model folder and hope that these
# are not outdated tokenizer files.
tokenizer = LlamaTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), clean_up_tokenization_spaces=True)
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except:
pass
else:
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/")
if path_to_model.exists():
tokenizer = AutoTokenizer.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
return tokenizer
def huggingface_loader(model_name):
if shared.model_type == 'chatglm':
LoaderClass = AutoModel
elif shared.model_type == 'HF_seq2seq':
LoaderClass = AutoModelForSeq2SeqLM
else:
LoaderClass = AutoModelForCausalLM
# Load the model in simple 16-bit mode by default
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]):
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code)
if torch.has_mps:
device = torch.device('mps')
model = model.to(device)
else:
model = model.cuda()
# DeepSpeed ZeRO-3
elif shared.args.deepspeed:
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
model.module.eval() # Inference
logger.info(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
# Custom
else:
params = {
"low_cpu_mem_usage": True,
"trust_remote_code": shared.args.trust_remote_code
}
if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)):
logger.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.")
shared.args.cpu = True
if shared.args.cpu:
params["torch_dtype"] = torch.float32
else:
params["device_map"] = 'auto'
if shared.args.load_in_4bit:
# See https://github.com/huggingface/transformers/pull/23479/files
# and https://huggingface.co/blog/4bit-transformers-bitsandbytes
quantization_config_params = {
'load_in_4bit': True,
'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None,
'bnb_4bit_quant_type': shared.args.quant_type,
'bnb_4bit_use_double_quant': shared.args.use_double_quant,
}
logger.warning("Using the following 4-bit params: " + str(quantization_config_params))
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params)
elif shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
elif shared.args.load_in_8bit:
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
elif shared.args.bf16:
params["torch_dtype"] = torch.bfloat16
else:
params["torch_dtype"] = torch.float16
params['max_memory'] = get_max_memory_dict()
if shared.args.disk:
params["offload_folder"] = shared.args.disk_cache_dir
checkpoint = Path(f'{shared.args.model_dir}/{model_name}')
if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=shared.args.trust_remote_code)
with init_empty_weights():
model = LoaderClass.from_config(config, trust_remote_code=shared.args.trust_remote_code)
model.tie_weights()
params['device_map'] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params['max_memory'],
no_split_module_classes=model._no_split_modules
)
model = LoaderClass.from_pretrained(checkpoint, **params)
return model
def flexgen_loader(model_name):
from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy
# Initialize environment
env = ExecutionEnv.create(shared.args.disk_cache_dir)
# Offloading policy
policy = Policy(1, 1,
shared.args.percent[0], shared.args.percent[1],
shared.args.percent[2], shared.args.percent[3],
shared.args.percent[4], shared.args.percent[5],
overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
cpu_cache_compute=False, attn_sparsity=1.0,
compress_weight=shared.args.compress_weight,
comp_weight_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=0, symmetric=False),
compress_cache=False,
comp_cache_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=2, symmetric=False))
model = OptLM(f"facebook/{model_name}", env, shared.args.model_dir, policy)
return model
def RWKV_loader(model_name):
from modules.RWKV import RWKVModel, RWKVTokenizer
model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))
return model, tokenizer
def llamacpp_loader(model_name):
from modules.llamacpp_model import LlamaCppModel
path = Path(f'{shared.args.model_dir}/{model_name}')
if path.is_file():
model_file = path
else:
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0]
logger.info(f"llama.cpp weights detected: {model_file}\n")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
return model, tokenizer
def GPTQ_loader(model_name):
# Monkey patch
if shared.args.monkey_patch:
logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.")
from modules.monkey_patch_gptq_lora import load_model_llama
model, _ = load_model_llama(model_name)
# No monkey patch
else:
import modules.GPTQ_loader
model = modules.GPTQ_loader.load_quantized(model_name)
return model
def AutoGPTQ_loader(model_name):
import modules.AutoGPTQ_loader
return modules.AutoGPTQ_loader.load_quantized(model_name)
def get_max_memory_dict():
max_memory = {}
if shared.args.gpu_memory:
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
for i in range(len(memory_map)):
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory
# If --auto-devices is provided standalone, try to get a reasonable value
# for the maximum memory of device :0
elif shared.args.auto_devices:
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
suggestion = round((total_mem - 1000) / 1000) * 1000
if total_mem - suggestion < 800:
suggestion -= 1000
suggestion = int(round(suggestion / 1000))
logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.")
max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}
return max_memory if len(max_memory) > 0 else None
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
torch.cuda.empty_cache()
def unload_model():
shared.model = shared.tokenizer = None
clear_torch_cache()
def reload_model():
unload_model()
shared.model, shared.tokenizer = load_model(shared.model_name)
def load_soft_prompt(name):
if name == 'None':
shared.soft_prompt = False
shared.soft_prompt_tensor = None
else:
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
zf.extract('tensor.npy')
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
logger.info(f"\nLoading the softprompt \"{name}\".")
for field in j:
if field != 'name':
if type(j[field]) is list:
logger.info(f"{field}: {', '.join(j[field])}")
else:
logger.info(f"{field}: {j[field]}")
tensor = np.load('tensor.npy')
Path('tensor.npy').unlink()
Path('meta.json').unlink()
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
shared.soft_prompt = True
shared.soft_prompt_tensor = tensor
return name