text-generation-webui/modules/ui.py
2023-05-29 15:32:45 -03:00

104 lines
3.7 KiB
Python

from pathlib import Path
import gradio as gr
import torch
from modules import shared
with open(Path(__file__).resolve().parent / '../css/main.css', 'r') as f:
css = f.read()
with open(Path(__file__).resolve().parent / '../css/chat.css', 'r') as f:
chat_css = f.read()
with open(Path(__file__).resolve().parent / '../css/main.js', 'r') as f:
main_js = f.read()
with open(Path(__file__).resolve().parent / '../css/chat.js', 'r') as f:
chat_js = f.read()
refresh_symbol = '\U0001f504' # 🔄
delete_symbol = '🗑️'
save_symbol = '💾'
theme = gr.themes.Default(
font=['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
).set(
border_color_primary='#c5c5d2',
button_large_padding='6px 12px',
body_text_color_subdued='#484848',
background_fill_secondary='#eaeaea'
)
def list_model_elements():
elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'autogptq', 'triton', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed']
for i in range(torch.cuda.device_count()):
elements.append(f'gpu_memory_{i}')
return elements
def list_interface_input_elements(chat=False):
elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream']
if chat:
elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command']
elements += list_model_elements()
return elements
def gather_interface_values(*args):
output = {}
for i, element in enumerate(shared.input_elements):
output[element] = args[i]
shared.persistent_interface_state = output
return output
def apply_interface_values(state, use_persistent=False):
if use_persistent:
state = shared.persistent_interface_state
elements = list_interface_input_elements(chat=shared.is_chat())
if len(state) == 0:
return [gr.update() for k in elements] # Dummy, do nothing
else:
return [state[k] if k in state else gr.update() for k in elements]
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
return gr.update(**(args or {}))
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[refresh_component]
)
return refresh_button
def create_delete_button(**kwargs):
return ToolButton(value=delete_symbol, **kwargs)
def create_save_button(**kwargs):
return ToolButton(value=save_symbol, **kwargs)