2023-05-10 23:54:25 -03:00

285 lines
10 KiB
Python

import logging
import re
import textwrap
from urllib.request import urlopen
import chromadb
import gradio as gr
import posthog
import torch
from bs4 import BeautifulSoup
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
from modules import chat, shared
logging.info('Intercepting all calls to posthog :)')
posthog.capture = lambda *args, **kwargs: None
# These parameters are customizable through settings.json
params = {
'chunk_count': 5,
'chunk_length': 700,
'strong_cleanup': True,
}
class Collecter():
def __init__(self):
pass
def add(self, texts: list[str]):
pass
def get(self, search_strings: list[str], n_results: int) -> list[str]:
pass
def clear(self):
pass
class Embedder():
def __init__(self):
pass
def embed(self, text: str) -> list[torch.Tensor]:
pass
class ChromaCollector(Collecter):
def __init__(self, embedder: Embedder):
super().__init__()
self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False))
self.embedder = embedder
self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed)
self.ids = []
def add(self, texts: list[str]):
self.ids = [f"id{i}" for i in range(len(texts))]
self.collection.add(documents=texts, ids=self.ids)
def get(self, search_strings: list[str], n_results: int) -> list[str]:
n_results = min(len(self.ids), n_results)
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['documents'][0]
return result
def get_ids(self, search_strings: list[str], n_results: int) -> list[str]:
n_results = min(len(self.ids), n_results)
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])['ids'][0]
return list(map(lambda x: int(x[2:]), result))
def clear(self):
self.collection.delete(ids=self.ids)
class SentenceTransformerEmbedder(Embedder):
def __init__(self) -> None:
self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
self.embed = self.model.encode
embedder = SentenceTransformerEmbedder()
collector = ChromaCollector(embedder)
chunk_count = 5
def add_chunks_to_collector(chunks):
global collector
collector.clear()
collector.add(chunks)
def feed_data_into_collector(corpus, chunk_len):
# Defining variables
chunk_len = int(chunk_len)
cumulative = ''
# Breaking the data into chunks and adding those to the db
cumulative += "Breaking the input dataset...\n\n"
yield cumulative
data_chunks = [corpus[i:i + chunk_len] for i in range(0, len(corpus), chunk_len)]
cumulative += f"{len(data_chunks)} chunks have been found.\n\nAdding the chunks to the database...\n\n"
yield cumulative
add_chunks_to_collector(data_chunks)
cumulative += "Done."
yield cumulative
def feed_file_into_collector(file, chunk_len):
yield 'Reading the input dataset...\n\n'
text = file.decode('utf-8')
for i in feed_data_into_collector(text, chunk_len):
yield i
def feed_url_into_collector(urls, chunk_len, strong_cleanup=False):
urls = urls.strip().split('\n')
all_text = ''
cumulative = ''
for url in urls:
cumulative += f'Loading {url}...\n\n'
yield cumulative
html = urlopen(url).read()
soup = BeautifulSoup(html, features="html.parser")
for script in soup(["script", "style"]):
script.extract()
strings = soup.stripped_strings
if strong_cleanup:
strings = [s for s in strings if re.search("[A-Za-z] ", s)]
text = '\n'.join([s.strip() for s in strings])
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n\n'.join(chunk for chunk in chunks if chunk)
all_text += text
for i in feed_data_into_collector(all_text, chunk_len):
yield i
def apply_settings(_chunk_count):
global chunk_count
chunk_count = int(_chunk_count)
settings_to_display = {
'chunk_count': chunk_count,
}
yield f"The following settings are now active: {str(settings_to_display)}"
def input_modifier(string):
if shared.is_chat():
return string
# Find the user input
pattern = re.compile(r"<\|begin-user-input\|>(.*?)<\|end-user-input\|>", re.DOTALL)
match = re.search(pattern, string)
if match:
user_input = match.group(1).strip()
else:
user_input = ''
# Get the most similar chunks
results = collector.get(user_input, n_results=chunk_count)
# Make the replacements
string = string.replace('<|begin-user-input|>', '')
string = string.replace('<|end-user-input|>', '')
string = string.replace('<|injection-point|>', '\n'.join(results))
return string
def custom_generate_chat_prompt(user_input, state, **kwargs):
if len(shared.history['internal']) > 2 and user_input != '':
chunks = []
for i in range(len(shared.history['internal']) - 1):
chunks.append('\n'.join(shared.history['internal'][i]))
add_chunks_to_collector(chunks)
query = '\n'.join(shared.history['internal'][-1] + [user_input])
try:
best_ids = collector.get_ids(query, n_results=len(shared.history['internal']) - 1)
# Sort the history by relevance instead of by chronological order,
# except for the latest message
state['history'] = [shared.history['internal'][id_] for id_ in best_ids[::-1]] + [shared.history['internal'][-1]]
except RuntimeError:
logging.error("Couldn't query the database, moving on...")
return chat.generate_chat_prompt(user_input, state, **kwargs)
def ui():
with gr.Accordion("Click for more information...", open=False):
gr.Markdown(textwrap.dedent("""
## About
This extension takes a dataset as input, breaks it into chunks, and adds the result to a local/offline Chroma database.
The database is then queried during inference time to get the excerpts that are closest to your input. The idea is to create
an arbitrarily large pseudocontext.
It is a modified version of the superbig extension by kaiokendev: https://github.com/kaiokendev/superbig
## Notebook/default modes
### How to use it
1) Paste your input text (of whatever length) into the text box below.
2) Click on "Load data" to feed this text into the Chroma database.
3) In your prompt, enter your question between `<|begin-user-input|>` and `<|end-user-input|>`, and specify the injection point with `<|injection-point|>`.
By default, the 5 closest chunks will be injected. You can customize this value in the "Generation settings" tab.
The special tokens mentioned above (`<|begin-user-input|>`, `<|end-user-input|>`, and `<|injection-point|>`) are removed when the injection happens.
### Example
For your convenience, you can use the following prompt as a starting point (for Alpaca models):
```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
You are ArxivGPT, trained on millions of Arxiv papers. You always answer the question, even if full context isn't provided to you. The following are snippets from an Arxiv paper. Use the snippets to answer the question. Think about it step by step
<|injection-point|>
### Input:
<|begin-user-input|>
What datasets are mentioned in the paper above?
<|end-user-input|>
### Response:
```
## Chat mode
In chat mode, the extension automatically sorts the history by relevance instead of chronologically, except for the very latest input/reply pair.
That is, the prompt will include (starting from the end):
* Your input
* The latest input/reply pair
* The #1 most relevant input/reply pair prior to the latest
* The #2 most relevant input/reply pair prior to the latest
* Etc
This way, the bot can have a long term history.
*This extension is currently experimental and under development.*
"""))
if not shared.is_chat():
with gr.Row():
with gr.Column():
with gr.Tab("Text input"):
data_input = gr.Textbox(lines=20, label='Input data')
update_data = gr.Button('Load data')
with gr.Tab("URL input"):
url_input = gr.Textbox(lines=10, label='Input URLs', info='Enter one or more URLs separated by newline characters.')
strong_cleanup = gr.Checkbox(value=params['strong_cleanup'], label='Strong cleanup', info='Only keeps html elements that look like long-form text.')
update_url = gr.Button('Load data')
with gr.Tab("File input"):
file_input = gr.File(label='Input file', type='binary')
update_file = gr.Button('Load data')
with gr.Tab("Generation settings"):
chunk_count = gr.Number(value=params['chunk_count'], label='Chunk count', info='The number of closest-matching chunks to include in the prompt.')
update_settings = gr.Button('Apply changes')
chunk_len = gr.Number(value=params['chunk_length'], label='Chunk length', info='In characters, not tokens. This value is used when you click on "Load data".')
with gr.Column():
last_updated = gr.Markdown()
update_data.click(feed_data_into_collector, [data_input, chunk_len], last_updated, show_progress=False)
update_url.click(feed_url_into_collector, [url_input, chunk_len, strong_cleanup], last_updated, show_progress=False)
update_file.click(feed_file_into_collector, [file_input, chunk_len], last_updated, show_progress=False)
update_settings.click(apply_settings, [chunk_count], last_updated, show_progress=False)