mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-25 22:08:53 +01:00
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
import copy
|
|
|
|
# Slightly different defaults for OpenAI's API
|
|
# Data type is important, Ex. use 0.0 for a float 0
|
|
default_req_params = {
|
|
'max_new_tokens': 16, # 'Inf' for chat
|
|
'temperature': 1.0,
|
|
'top_p': 1.0,
|
|
'top_k': 1, # choose 20 for chat in absence of another default
|
|
'repetition_penalty': 1.18,
|
|
'repetition_penalty_range': 0,
|
|
'encoder_repetition_penalty': 1.0,
|
|
'suffix': None,
|
|
'stream': False,
|
|
'echo': False,
|
|
'seed': -1,
|
|
# 'n' : default(body, 'n', 1), # 'n' doesn't have a direct map
|
|
'truncation_length': 2048, # first use shared.settings value
|
|
'add_bos_token': True,
|
|
'do_sample': True,
|
|
'typical_p': 1.0,
|
|
'epsilon_cutoff': 0.0, # In units of 1e-4
|
|
'eta_cutoff': 0.0, # In units of 1e-4
|
|
'tfs': 1.0,
|
|
'top_a': 0.0,
|
|
'min_length': 0,
|
|
'no_repeat_ngram_size': 0,
|
|
'num_beams': 1,
|
|
'penalty_alpha': 0.0,
|
|
'length_penalty': 1.0,
|
|
'early_stopping': False,
|
|
'mirostat_mode': 0,
|
|
'mirostat_tau': 5.0,
|
|
'mirostat_eta': 0.1,
|
|
'ban_eos_token': False,
|
|
'skip_special_tokens': True,
|
|
'custom_stopping_strings': '',
|
|
# 'logits_processor' - conditionally passed
|
|
# 'stopping_strings' - temporarily used
|
|
# 'logprobs' - temporarily used
|
|
# 'requested_model' - temporarily used
|
|
}
|
|
|
|
|
|
def get_default_req_params():
|
|
return copy.deepcopy(default_req_params)
|
|
|
|
# little helper to get defaults if arg is present but None and should be the same type as default.
|
|
def default(dic, key, default):
|
|
val = dic.get(key, default)
|
|
if type(val) != type(default):
|
|
# maybe it's just something like 1 instead of 1.0
|
|
try:
|
|
v = type(default)(val)
|
|
if type(val)(v) == val: # if it's the same value passed in, it's ok.
|
|
return v
|
|
except:
|
|
pass
|
|
|
|
val = default
|
|
return val
|
|
|
|
|
|
def clamp(value, minvalue, maxvalue):
|
|
return max(minvalue, min(value, maxvalue))
|