2023-05-21 22:42:34 -03:00

179 lines
7.8 KiB
Python

import base64
import re
from dataclasses import dataclass
from io import BytesIO
from typing import Any, List, Optional
import torch
from PIL import Image
from extensions.multimodal.pipeline_loader import load_pipeline
from modules import shared
from modules.logging_colors import logger
from modules.text_generation import encode, get_max_prompt_length
@dataclass
class PromptPart:
text: str
image: Optional[Image.Image] = None
is_image: bool = False
input_ids: Optional[torch.Tensor] = None
embedding: Optional[torch.Tensor] = None
class MultimodalEmbedder:
def __init__(self, params: dict):
pipeline, source = load_pipeline(params)
self.pipeline = pipeline
logger.info(f'Multimodal: loaded pipeline {self.pipeline.name()} from pipelines/{source} ({self.pipeline.__class__.__name__})')
def _split_prompt(self, prompt: str, load_images: bool = False) -> List[PromptPart]:
"""Splits a prompt into a list of `PromptParts` to separate image data from text.
It will also append `image_start` and `image_end` before and after the image, and optionally parse and load the images,
if `load_images` is `True`.
"""
parts: List[PromptPart] = []
curr = 0
while True:
match = re.search(r'<img src="data:image/jpeg;base64,([A-Za-z0-9+/=]+)">', prompt[curr:])
if match is None:
# no more image tokens, append the rest of the prompt
if curr > 0:
# add image end token after last image
parts.append(PromptPart(text=self.pipeline.image_end() + prompt[curr:]))
else:
parts.append(PromptPart(text=prompt))
break
# found an image, append image start token to the text
if match.start() > 0:
parts.append(PromptPart(text=prompt[curr:curr + match.start()] + self.pipeline.image_start()))
else:
parts.append(PromptPart(text=self.pipeline.image_start()))
# append the image
parts.append(PromptPart(
text=match.group(0),
image=Image.open(BytesIO(base64.b64decode(match.group(1)))) if load_images else None,
is_image=True
))
curr += match.end()
return parts
def _len_in_tokens_prompt_parts(self, parts: List[PromptPart]) -> int:
"""Total length in tokens of all `parts`"""
tokens = 0
for part in parts:
if part.is_image:
tokens += self.pipeline.num_image_embeds()
elif part.input_ids is not None:
tokens += len(part.input_ids)
else:
tokens += len(encode(part.text)[0])
return tokens
def len_in_tokens(self, prompt: str) -> int:
"""Total length in tokens for a given text `prompt`"""
parts = self._split_prompt(prompt, False)
return self._len_in_tokens_prompt_parts(parts)
def _encode_single_text(self, part: PromptPart, add_bos_token: bool) -> PromptPart:
"""Encode a single prompt `part` to `input_ids`. Returns a `PromptPart`"""
if part.is_image:
placeholders = torch.ones((self.pipeline.num_image_embeds())) * self.pipeline.placeholder_token_id()
part.input_ids = placeholders.to(shared.model.device, dtype=torch.int64)
else:
part.input_ids = encode(part.text, add_bos_token=add_bos_token)[0].to(shared.model.device, dtype=torch.int64)
return part
@staticmethod
def _num_images(parts: List[PromptPart]) -> int:
count = 0
for part in parts:
if part.is_image:
count += 1
return count
def _encode_text(self, state, parts: List[PromptPart]) -> List[PromptPart]:
"""Encode text to token_ids, also truncate the prompt, if necessary.
The chat/instruct mode should make prompts that fit in get_max_prompt_length, but if max_new_tokens are set
such that the context + min_rows don't fit, we can get a prompt which is too long.
We can't truncate image embeddings, as it leads to broken generation, so remove the images instead and warn the user
"""
encoded: List[PromptPart] = []
for i, part in enumerate(parts):
encoded.append(self._encode_single_text(part, i == 0 and state['add_bos_token']))
# truncation:
max_len = get_max_prompt_length(state)
removed_images = 0
# 1. remove entire text/image blocks
while self._len_in_tokens_prompt_parts(encoded[1:]) > max_len:
if encoded[0].is_image:
removed_images += 1
encoded = encoded[1:]
# 2. check if the last prompt part doesn't need to get truncated
if self._len_in_tokens_prompt_parts(encoded) > max_len:
if encoded[0].is_image:
# don't truncate image embeddings, just remove the image, otherwise generation will be broken
removed_images += 1
encoded = encoded[1:]
elif len(encoded) > 1 and encoded[0].text.endswith(self.pipeline.image_start()):
# see if we can keep image_start token
len_image_start = len(encode(self.pipeline.image_start(), add_bos_token=state['add_bos_token'])[0])
if self._len_in_tokens_prompt_parts(encoded[1:]) + len_image_start > max_len:
# we can't -> remove this text, and the image
encoded = encoded[2:]
removed_images += 1
else:
# we can -> just truncate the text
trunc_len = self._len_in_tokens_prompt_parts(encoded) - max_len
encoded[0].input_ids = encoded[0].input_ids[trunc_len:]
elif len(encoded) > 0:
# only one text left, truncate it normally
trunc_len = self._len_in_tokens_prompt_parts(encoded) - max_len
encoded[0].input_ids = encoded[0].input_ids[trunc_len:]
# notify user if we truncated an image
if removed_images > 0:
logger.warning(f"Multimodal: removed {removed_images} image(s) from prompt. Try decreasing max_new_tokens if generation is broken")
return encoded
def _embed(self, parts: List[PromptPart]) -> List[PromptPart]:
# batch images
image_indicies = [i for i, part in enumerate(parts) if part.is_image]
embedded = self.pipeline.embed_images([parts[i].image for i in image_indicies])
for i, embeds in zip(image_indicies, embedded):
parts[i].embedding = embeds
# embed text
for (i, part) in enumerate(parts):
if not part.is_image:
parts[i].embedding = self.pipeline.embed_tokens(part.input_ids)
return parts
def _remove_old_images(self, parts: List[PromptPart], params: dict) -> List[PromptPart]:
if params['add_all_images_to_prompt']:
return parts
already_added = False
for i, part in reversed(list(enumerate(parts))):
if part.is_image:
if already_added:
parts[i].embedding = self.pipeline.placeholder_embeddings()
else:
already_added = True
return parts
def forward(self, prompt: str, state: Any, params: dict):
prompt_parts = self._split_prompt(prompt, True)
prompt_parts = self._encode_text(state, prompt_parts)
prompt_parts = self._embed(prompt_parts)
prompt_parts = self._remove_old_images(prompt_parts, params)
embeds = tuple(part.embedding for part in prompt_parts)
ids = tuple(part.input_ids for part in prompt_parts)
input_embeds = torch.cat(embeds, dim=0)
input_ids = torch.cat(ids, dim=0)
return prompt, input_ids, input_embeds, self._num_images(prompt_parts)