mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-09 12:09:04 +01:00
200 lines
6.7 KiB
Python
200 lines
6.7 KiB
Python
import re
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from modules import shared
|
|
from modules.callbacks import Iteratorize
|
|
from modules.llama_cpp_python_hijack import llama_cpp_lib
|
|
from modules.logging_colors import logger
|
|
from modules.text_generation import get_max_prompt_length
|
|
|
|
llamacpp_quant_mapping = {
|
|
'f32': 0,
|
|
'fp16': 1,
|
|
'q4_0': 2,
|
|
'q4_1': 3,
|
|
'q5_0': 6,
|
|
'q5_1': 7,
|
|
'q8_0': 8,
|
|
'q8_1': 9,
|
|
'q2_k': 10,
|
|
'q3_k': 11,
|
|
'q4_k': 12,
|
|
'q5_k': 13,
|
|
'q6_k': 14,
|
|
'q8_k': 15,
|
|
'iq4_nl': 20,
|
|
'bf16': 30,
|
|
}
|
|
|
|
llamacpp_valid_cache_types = {'fp16', 'q8_0', 'q4_0'}
|
|
|
|
|
|
def get_llamacpp_cache_type_for_string(quant_type: str):
|
|
quant_type = quant_type.lower()
|
|
if quant_type in llamacpp_valid_cache_types:
|
|
return llamacpp_quant_mapping[quant_type]
|
|
else:
|
|
raise ValueError(f"Invalid cache type for llama.cpp: {quant_type}. Valid options are: fp16, q8_0, q4_0.")
|
|
|
|
|
|
def ban_eos_logits_processor(eos_token, input_ids, logits):
|
|
logits[eos_token] = -float('inf')
|
|
return logits
|
|
|
|
|
|
def custom_token_ban_logits_processor(token_ids, input_ids, logits):
|
|
for token_id in token_ids:
|
|
logits[token_id] = -float('inf')
|
|
|
|
return logits
|
|
|
|
|
|
class LlamaCppModel:
|
|
def __init__(self):
|
|
self.initialized = False
|
|
self.grammar_string = ''
|
|
self.grammar = None
|
|
|
|
def __del__(self):
|
|
del self.model
|
|
|
|
@classmethod
|
|
def from_pretrained(self, path):
|
|
|
|
Llama = llama_cpp_lib().Llama
|
|
LlamaCache = llama_cpp_lib().LlamaCache
|
|
|
|
result = self()
|
|
cache_capacity = 0
|
|
if shared.args.cache_capacity is not None:
|
|
if 'GiB' in shared.args.cache_capacity:
|
|
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000
|
|
elif 'MiB' in shared.args.cache_capacity:
|
|
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000
|
|
else:
|
|
cache_capacity = int(shared.args.cache_capacity)
|
|
|
|
if cache_capacity > 0:
|
|
logger.info("Cache capacity is " + str(cache_capacity) + " bytes")
|
|
|
|
if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '':
|
|
tensor_split_list = None
|
|
else:
|
|
tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")]
|
|
|
|
params = {
|
|
'model_path': str(path),
|
|
'n_ctx': shared.args.n_ctx,
|
|
'n_threads': shared.args.threads or None,
|
|
'n_threads_batch': shared.args.threads_batch or None,
|
|
'n_batch': shared.args.n_batch,
|
|
'use_mmap': not shared.args.no_mmap,
|
|
'use_mlock': shared.args.mlock,
|
|
'mul_mat_q': not shared.args.no_mul_mat_q,
|
|
'numa': shared.args.numa,
|
|
'n_gpu_layers': shared.args.n_gpu_layers,
|
|
'rope_freq_base': shared.args.rope_freq_base,
|
|
'tensor_split': tensor_split_list,
|
|
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
|
'offload_kqv': not shared.args.no_offload_kqv,
|
|
'split_mode': 1 if not shared.args.row_split else 2,
|
|
'flash_attn': shared.args.flash_attn
|
|
}
|
|
|
|
if shared.args.cache_type != 'fp16':
|
|
params["type_k"] = get_llamacpp_cache_type_for_string(shared.args.cache_type)
|
|
params["type_v"] = get_llamacpp_cache_type_for_string(shared.args.cache_type)
|
|
|
|
result.model = Llama(**params)
|
|
if cache_capacity > 0:
|
|
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
|
|
|
# This is ugly, but the model and the tokenizer are the same object in this library.
|
|
return result, result
|
|
|
|
def encode(self, string):
|
|
if type(string) is str:
|
|
string = string.encode()
|
|
|
|
return self.model.tokenize(string)
|
|
|
|
def decode(self, ids, **kwargs):
|
|
return self.model.detokenize(ids).decode('utf-8')
|
|
|
|
def get_logits(self, tokens):
|
|
self.model.reset()
|
|
self.model.eval(tokens)
|
|
logits = self.model._scores
|
|
logits = np.expand_dims(logits, 0) # batch dim is expected
|
|
return torch.tensor(logits, dtype=torch.float32)
|
|
|
|
def load_grammar(self, string):
|
|
if string != self.grammar_string:
|
|
self.grammar_string = string
|
|
if string.strip() != '':
|
|
self.grammar = llama_cpp_lib().LlamaGrammar.from_string(string)
|
|
else:
|
|
self.grammar = None
|
|
|
|
def generate(self, prompt, state, callback=None):
|
|
LogitsProcessorList = llama_cpp_lib().LogitsProcessorList
|
|
prompt = prompt if type(prompt) is str else prompt.decode()
|
|
|
|
# Handle truncation
|
|
prompt = self.encode(prompt)
|
|
prompt = prompt[-get_max_prompt_length(state):]
|
|
prompt = self.decode(prompt)
|
|
|
|
self.load_grammar(state['grammar_string'])
|
|
logit_processors = LogitsProcessorList()
|
|
if state['ban_eos_token']:
|
|
logit_processors.append(partial(ban_eos_logits_processor, self.model.token_eos()))
|
|
|
|
if state['custom_token_bans']:
|
|
to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
|
|
if len(to_ban) > 0:
|
|
logit_processors.append(partial(custom_token_ban_logits_processor, to_ban))
|
|
|
|
completion_chunks = self.model.create_completion(
|
|
prompt=prompt,
|
|
max_tokens=state['max_new_tokens'],
|
|
temperature=state['temperature'],
|
|
top_p=state['top_p'] if state['top_p'] < 1 else 0.999,
|
|
min_p=state['min_p'],
|
|
typical_p=state['typical_p'],
|
|
frequency_penalty=state['frequency_penalty'],
|
|
presence_penalty=state['presence_penalty'],
|
|
repeat_penalty=state['repetition_penalty'],
|
|
top_k=state['top_k'],
|
|
stream=True,
|
|
seed=int(state['seed']) if state['seed'] != -1 else None,
|
|
tfs_z=state['tfs'],
|
|
mirostat_mode=int(state['mirostat_mode']),
|
|
mirostat_tau=state['mirostat_tau'],
|
|
mirostat_eta=state['mirostat_eta'],
|
|
logits_processor=logit_processors,
|
|
grammar=self.grammar
|
|
)
|
|
|
|
output = ""
|
|
for completion_chunk in completion_chunks:
|
|
if shared.stop_everything:
|
|
break
|
|
|
|
text = completion_chunk['choices'][0]['text']
|
|
output += text
|
|
if callback:
|
|
callback(text)
|
|
|
|
return output
|
|
|
|
def generate_with_streaming(self, *args, **kwargs):
|
|
with Iteratorize(self.generate, args, kwargs, callback=None) as generator:
|
|
reply = ''
|
|
for token in generator:
|
|
reply += token
|
|
yield reply
|