mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 19:09:32 +01:00
161 lines
7.2 KiB
Python
161 lines
7.2 KiB
Python
import json
|
|
import os
|
|
import time
|
|
import zipfile
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import transformers
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
import modules.shared as shared
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
local_rank = None
|
|
|
|
if shared.args.flexgen:
|
|
from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
|
|
Policy, str2bool)
|
|
|
|
if shared.args.deepspeed:
|
|
import deepspeed
|
|
from transformers.deepspeed import (HfDeepSpeedConfig,
|
|
is_deepspeed_zero3_enabled)
|
|
|
|
from modules.deepspeed_parameters import generate_ds_config
|
|
|
|
# Distributed setup
|
|
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
torch.cuda.set_device(local_rank)
|
|
deepspeed.init_distributed()
|
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
|
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
|
|
|
def load_model(model_name):
|
|
print(f"Loading {model_name}...")
|
|
t0 = time.time()
|
|
|
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
|
|
|
# Default settings
|
|
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
|
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
|
|
|
|
# FlexGen
|
|
elif shared.args.flexgen:
|
|
# Initialize environment
|
|
env = ExecutionEnv.create(shared.args.disk_cache_dir)
|
|
|
|
# Offloading policy
|
|
policy = Policy(1, 1,
|
|
shared.args.percent[0], shared.args.percent[1],
|
|
shared.args.percent[2], shared.args.percent[3],
|
|
shared.args.percent[4], shared.args.percent[5],
|
|
overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
|
|
cpu_cache_compute=False, attn_sparsity=1.0,
|
|
compress_weight=shared.args.compress_weight,
|
|
comp_weight_config=CompressionConfig(
|
|
num_bits=4, group_size=64,
|
|
group_dim=0, symmetric=False),
|
|
compress_cache=False,
|
|
comp_cache_config=CompressionConfig(
|
|
num_bits=4, group_size=64,
|
|
group_dim=2, symmetric=False))
|
|
|
|
model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
|
|
|
|
# DeepSpeed ZeRO-3
|
|
elif shared.args.deepspeed:
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
|
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
|
|
model.module.eval() # Inference
|
|
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
|
|
|
# RMKV model (not on HuggingFace)
|
|
elif shared.is_RWKV:
|
|
from modules.RWKV import RWKVModel
|
|
|
|
model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
|
|
|
|
return model, None
|
|
|
|
# Custom
|
|
else:
|
|
command = "AutoModelForCausalLM.from_pretrained"
|
|
params = ["low_cpu_mem_usage=True"]
|
|
if not shared.args.cpu and not torch.cuda.is_available():
|
|
print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
|
|
shared.args.cpu = True
|
|
|
|
if shared.args.cpu:
|
|
params.append("low_cpu_mem_usage=True")
|
|
params.append("torch_dtype=torch.float32")
|
|
else:
|
|
params.append("device_map='auto'")
|
|
params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
|
|
|
|
if shared.args.gpu_memory:
|
|
memory_map = shared.args.gpu_memory
|
|
max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
|
|
for i in range(1, len(memory_map)):
|
|
max_memory += (f", {i}: '{memory_map[i]}GiB'")
|
|
max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
|
|
params.append(max_memory)
|
|
elif not shared.args.load_in_8bit:
|
|
total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
|
|
suggestion = round((total_mem-1000)/1000)*1000
|
|
if total_mem-suggestion < 800:
|
|
suggestion -= 1000
|
|
suggestion = int(round(suggestion/1000))
|
|
print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
|
|
params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
|
|
if shared.args.disk:
|
|
params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
|
|
|
|
command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
|
|
model = eval(command)
|
|
|
|
# Loading the tokenizer
|
|
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
|
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
|
else:
|
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
|
|
tokenizer.truncation_side = 'left'
|
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
return model, tokenizer
|
|
|
|
def load_soft_prompt(name):
|
|
if name == 'None':
|
|
shared.soft_prompt = False
|
|
shared.soft_prompt_tensor = None
|
|
else:
|
|
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
|
|
zf.extract('tensor.npy')
|
|
zf.extract('meta.json')
|
|
j = json.loads(open('meta.json', 'r').read())
|
|
print(f"\nLoading the softprompt \"{name}\".")
|
|
for field in j:
|
|
if field != 'name':
|
|
if type(j[field]) is list:
|
|
print(f"{field}: {', '.join(j[field])}")
|
|
else:
|
|
print(f"{field}: {j[field]}")
|
|
print()
|
|
tensor = np.load('tensor.npy')
|
|
Path('tensor.npy').unlink()
|
|
Path('meta.json').unlink()
|
|
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
|
|
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
|
|
|
|
shared.soft_prompt = True
|
|
shared.soft_prompt_tensor = tensor
|
|
|
|
return name
|