2023-05-09 22:49:39 -03:00

201 lines
6.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import re
from num2words import num2words
punctuation = r'[\s,.?!/)\'\]>]'
alphabet_map = {
"A": " Ei ",
"B": " Bee ",
"C": " See ",
"D": " Dee ",
"E": " Eee ",
"F": " Eff ",
"G": " Jee ",
"H": " Eich ",
"I": " Eye ",
"J": " Jay ",
"K": " Kay ",
"L": " El ",
"M": " Emm ",
"N": " Enn ",
"O": " Ohh ",
"P": " Pee ",
"Q": " Queue ",
"R": " Are ",
"S": " Ess ",
"T": " Tee ",
"U": " You ",
"V": " Vee ",
"W": " Double You ",
"X": " Ex ",
"Y": " Why ",
"Z": " Zed " # Zed is weird, as I (da3dsoul) am American, but most of the voice models sound British, so it matches
}
def preprocess(string):
# the order for some of these matter
# For example, you need to remove the commas in numbers before expanding them
string = remove_surrounded_chars(string)
string = string.replace('"', '')
string = string.replace('\u201D', '').replace('\u201C', '') # right and left quote
string = string.replace('\u201F', '') # italic looking quote
string = string.replace('\n', ' ')
string = convert_num_locale(string)
string = replace_negative(string)
string = replace_roman(string)
string = hyphen_range_to(string)
string = num_to_words(string)
# TODO Try to use a ML predictor to expand abbreviations. It's hard, dependent on context, and whether to actually
# try to say the abbreviation or spell it out as I've done below is not agreed upon
# For now, expand abbreviations to pronunciations
# replace_abbreviations adds a lot of unnecessary whitespace to ensure separation
string = replace_abbreviations(string)
string = replace_lowercase_abbreviations(string)
# cleanup whitespaces
# remove whitespace before punctuation
string = re.sub(rf'\s+({punctuation})', r'\1', string)
string = string.strip()
# compact whitespace
string = ' '.join(string.split())
return string
def remove_surrounded_chars(string):
# first this expression will check if there is a string nested exclusively between a alt=
# and a style= string. This would correspond to only a the alt text of an embedded image
# If it matches it will only keep that part as the string, and rend it for further processing
# Afterwards this expression matches to 'as few symbols as possible (0 upwards) between any
# asterisks' OR' as few symbols as possible (0 upwards) between an asterisk and the end of the string'
if re.search(r'(?<=alt=)(.*)(?=style=)', string, re.DOTALL):
m = re.search(r'(?<=alt=)(.*)(?=style=)', string, re.DOTALL)
string = m.group(0)
return re.sub(r'\*[^*]*?(\*|$)', '', string)
def convert_num_locale(text):
# This detects locale and converts it to American without comma separators
pattern = re.compile(r'(?:\s|^)\d{1,3}(?:\.\d{3})+(,\d+)(?:\s|$)')
result = text
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start] + result[start:end].replace('.', '').replace(',', '.') + result[end:len(result)]
# removes comma separators from existing American numbers
pattern = re.compile(r'(\d),(\d)')
result = pattern.sub(r'\1\2', result)
return result
def replace_negative(string):
# handles situations like -5. -5 would become negative 5, which would then be expanded to negative five
return re.sub(rf'(\s)(-)(\d+)({punctuation})', r'\1negative \3\4', string)
def replace_roman(string):
# find a string of roman numerals.
# Only 2 or more, to avoid capturing I and single character abbreviations, like names
pattern = re.compile(rf'\s[IVXLCDM]{{2,}}{punctuation}')
result = string
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start + 1] + str(roman_to_int(result[start + 1:end - 1])) + result[end - 1:len(result)]
return result
def roman_to_int(s):
rom_val = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
int_val = 0
for i in range(len(s)):
if i > 0 and rom_val[s[i]] > rom_val[s[i - 1]]:
int_val += rom_val[s[i]] - 2 * rom_val[s[i - 1]]
else:
int_val += rom_val[s[i]]
return int_val
def hyphen_range_to(text):
pattern = re.compile(r'(\d+)[-](\d+)')
result = pattern.sub(lambda x: x.group(1) + ' to ' + x.group(2), text)
return result
def num_to_words(text):
# 1000 or 10.23
pattern = re.compile(r'\d+\.\d+|\d+')
result = pattern.sub(lambda x: num2words(float(x.group())), text)
return result
def replace_abbreviations(string):
# abbreviations 1 to 4 characters long. It will get things like A and I, but those are pronounced with their letter
pattern = re.compile(rf'(^|[\s(.\'\[<])([A-Z]{{1,4}})({punctuation}|$)')
result = string
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start] + replace_abbreviation(result[start:end]) + result[end:len(result)]
return result
def replace_lowercase_abbreviations(string):
# abbreviations 1 to 4 characters long, separated by dots i.e. e.g.
pattern = re.compile(rf'(^|[\s(.\'\[<])(([a-z]\.){{1,4}})({punctuation}|$)')
result = string
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start] + replace_abbreviation(result[start:end].upper()) + result[end:len(result)]
return result
def replace_abbreviation(string):
result = ""
for char in string:
result += match_mapping(char)
return result
def match_mapping(char):
for mapping in alphabet_map.keys():
if char == mapping:
return alphabet_map[char]
return char
def __main__(args):
print(preprocess(args[1]))
if __name__ == "__main__":
import sys
__main__(sys.argv)