text-generation-webui/extensions/llava/script.py
2023-04-25 21:25:34 -03:00

270 lines
11 KiB
Python

import base64
import re
import time
from dataclasses import dataclass
from functools import partial
from io import BytesIO
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModel
from modules import shared
from modules.extensions import apply_extensions
from modules.text_generation import encode, get_max_prompt_length
params = {
"add_all_images_to_prompt": False,
# device to run CLIP on
"clip_device": None,
# bits to load clip in either 32 or 16 (it doesn't support 8-bit)
"clip_bits": 32,
# device to run projector on
"projector_device": None,
# projector bits, either 32 or 16
"projector_bits": 32
}
# If 'state' is True, will hijack the next chat generation
input_hijack = {
'state': False,
'value': ["", ""]
}
# initialized in ui, so that params are loaded from settings
llava_embedder = None
@dataclass
class Token:
token: str
id: int
class LLaVAEmbedder:
IM_PATCH = Token("<im_patch>", 32000)
IM_START = Token("<im_start>", 32001)
IM_END = Token("<im_end>", 32002)
CLIP_VIT_HUB_NAME = 'openai/clip-vit-large-patch14'
PROJECTOR_HUB_NAME = 'liuhaotian/LLaVA-13b-pretrain-projector-v0'
PROJECTOR_FILE = 'LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption.bin'
def __init__(self):
self.clip_device = self._get_device("clip_device")
self.clip_dtype = self._get_dtype("clip_bits")
self.projector_device = self._get_device("projector_device")
self.projector_dtype = self._get_dtype("projector_bits")
self.image_processor, self.vision_tower, self.mm_projector = self._load_models()
def _get_device(self, setting_name):
if params[setting_name] is None:
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
return torch.device(params[setting_name])
def _get_dtype(self, setting_name):
return torch.float32 if int(params[setting_name]) == 32 else torch.float16
def _load_models(self):
start_ts = time.time()
print(f"LLaVA - Loading {LLaVAEmbedder.CLIP_VIT_HUB_NAME} as {self.clip_dtype} on {self.clip_device}...")
image_processor = CLIPImageProcessor.from_pretrained(LLaVAEmbedder.CLIP_VIT_HUB_NAME, torch_dtype=self.clip_dtype)
vision_tower = CLIPVisionModel.from_pretrained(LLaVAEmbedder.CLIP_VIT_HUB_NAME, torch_dtype=self.clip_dtype).to(self.clip_device)
print(f"LLaVA - Loading {LLaVAEmbedder.PROJECTOR_HUB_NAME} as {self.projector_dtype} on {self.projector_device}...")
projector_path = hf_hub_download(LLaVAEmbedder.PROJECTOR_HUB_NAME, LLaVAEmbedder.PROJECTOR_FILE)
mm_projector = torch.nn.Linear(1024, 5120)
projector_data = torch.load(projector_path)
mm_projector.weight = torch.nn.Parameter(projector_data['model.mm_projector.weight'].to(dtype=self.projector_dtype), False)
mm_projector.bias = torch.nn.Parameter(projector_data['model.mm_projector.bias'].to(dtype=self.projector_dtype), False)
mm_projector = mm_projector.to(self.projector_device)
print(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds")
return image_processor, vision_tower, mm_projector
def _update_prompt(self, prompt, images):
for _ in images:
# replace the image token with the image patch token in the prompt (each occurrence)
replace_token = LLaVAEmbedder.IM_PATCH.token * 256
replace_token = LLaVAEmbedder.IM_START.token + replace_token + LLaVAEmbedder.IM_END.token
prompt = re.sub(r'<img src="data:image/jpeg;base64,([A-Za-z0-9+/=]+)">', replace_token, prompt, 1)
return prompt
def _extract_image_features(self, images):
images = self.image_processor(images, return_tensors='pt')['pixel_values']
images = images.to(self.clip_device, dtype=self.clip_dtype)
with torch.no_grad():
image_forward_outs = self.vision_tower(images, output_hidden_states=True)
select_hidden_state_layer = -2
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
image_features = select_hidden_state[:, 1:].to(self.projector_device, dtype=self.projector_dtype)
image_features = self.mm_projector(image_features)
return image_features
def forward(self, prompt, images, state):
prompt = self._update_prompt(prompt, images)
input_ids = encode(prompt, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))[0]
input_embeds = shared.model.model.embed_tokens(input_ids).to(self.projector_device)
if input_ids[0] == LLaVAEmbedder.IM_PATCH.id:
# prompt got truncated in the middle of an image, remove the image data
im_end = torch.where(input_ids == LLaVAEmbedder.IM_END.id)[0][0]
input_ids = input_ids[im_end+1:]
input_embeds = input_embeds[im_end+1:]
leftover_images = torch.where(input_ids == LLaVAEmbedder.IM_START.id)[0].shape[0]
print(f"LLaVA - WARNING: removed {len(images) - leftover_images} image(s) from prompt. The generation might be broken, try decreasing max_new_tokens")
images = images[-leftover_images:]
if len(images) == 0:
return prompt, input_ids, input_embeds, 0
total_embedded = 0
image_features = self._extract_image_features(images).to(self.projector_device)
image_start_tokens = torch.where(input_ids == LLaVAEmbedder.IM_START.id)[0]
if not torch.any(input_ids == LLaVAEmbedder.IM_PATCH.id) or len(image_start_tokens) == 0:
# multimodal LLM, but the current prompt is not multimodal/truncated
return prompt, input_ids, input_embeds, total_embedded
cur_image_idx = 0
if not params['add_all_images_to_prompt']:
image_start_tokens = [image_start_tokens[-1]]
cur_image_idx = -1
for image_start_token_pos in image_start_tokens:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
input_embeds = torch.cat((input_embeds[:image_start_token_pos+1], cur_image_features, input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
total_embedded += 1
return prompt, input_ids, input_embeds, total_embedded
@staticmethod
def len_in_tokens(text):
images = re.findall(r'<img src="data:image/jpeg;base64,[A-Za-z0-9+/=]+">', text)
image_tokens = 0
for _ in images:
image_tokens += 258
return len(encode(re.sub(r'<img src="data:image/jpeg;base64,[A-Za-z0-9+/=]+">', '', text))[0]) + image_tokens
def add_chat_picture(picture, text, visible_text):
# resize the image, so that shortest edge is at least 224 (size for CLIP), and at most 300 (to keep history manageable)
max_hw, min_hw = max(picture.size), min(picture.size)
aspect_ratio = max_hw / min_hw
shortest_edge = int(max(300 / aspect_ratio, 224))
longest_edge = int(shortest_edge * aspect_ratio)
w = shortest_edge if picture.width < picture.height else longest_edge
h = shortest_edge if picture.width >= picture.height else longest_edge
picture = picture.resize((w,h))
buffer = BytesIO()
picture.save(buffer, format="JPEG")
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
image = f'<img src="data:image/jpeg;base64,{img_str}">'
if '<image>' in text:
text = text.replace('<image>', image)
else:
text = text + '\n' + image
if visible_text == '' or visible_text is None:
visible_text = text
elif '<image>' in visible_text:
visible_text = visible_text.replace('<image>', image)
else:
visible_text = visible_text + '\n' + image
return text, visible_text
def custom_generate_chat_prompt(user_input, state, **kwargs):
impersonate = kwargs['impersonate'] if 'impersonate' in kwargs else False
_continue = kwargs['_continue'] if '_continue' in kwargs else False
also_return_rows = kwargs['also_return_rows'] if 'also_return_rows' in kwargs else False
rows = [f"{state['context'].strip()}\n"]
min_rows = 3
# Finding the maximum prompt size
chat_prompt_size = state['chat_prompt_size']
if shared.soft_prompt:
chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
max_length = min(get_max_prompt_length(state), chat_prompt_size)
prefix1 = f"{state['name1']}: "
prefix2 = f"{state['name2']}: "
i = len(shared.history['internal']) - 1
while i >= 0 and LLaVAEmbedder.len_in_tokens(''.join(rows)) < max_length:
if _continue and i == len(shared.history['internal']) - 1:
rows.insert(1, f"{prefix2}{shared.history['internal'][i][1]}")
else:
rows.insert(1, f"{prefix2}{shared.history['internal'][i][1].strip()}{state['end_of_turn']}\n")
string = shared.history['internal'][i][0]
if string != '':
rows.insert(1, f"{prefix1}{string.strip()}{state['end_of_turn']}\n")
i -= 1
if impersonate:
min_rows = 2
rows.append(f"{prefix1}")
elif not _continue:
# Adding the user message
if len(user_input) > 0:
rows.append(f"{prefix1}{user_input}{state['end_of_turn']}\n")
# Adding the Character prefix
rows.append(apply_extensions("bot_prefix", f"{prefix2}"))
while len(rows) > min_rows and LLaVAEmbedder.len_in_tokens(''.join(rows)) >= max_length:
rows.pop(1)
prompt = ''.join(rows)
if also_return_rows:
return prompt, rows
else:
return prompt
def tokenizer_modifier(state, prompt, input_ids, input_embeds):
global params
start_ts = time.time()
image_matches = re.finditer(r'<img src="data:image/jpeg;base64,([A-Za-z0-9+/=]+)">', prompt)
images = [Image.open(BytesIO(base64.b64decode(match.group(1)))) for match in image_matches]
if len(images) == 0:
return prompt, input_ids, input_embeds
prompt, input_ids, input_embeds, total_embedded = llava_embedder.forward(prompt, images, state)
print(f'LLaVA - Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s')
return (prompt,
input_ids.unsqueeze(0).to(shared.model.device, dtype=torch.int64),
input_embeds.unsqueeze(0).to(shared.model.device, dtype=shared.model.dtype))
def ui():
global llava_embedder
llava_embedder = LLaVAEmbedder()
with gr.Column():
picture_select = gr.Image(label='Send a picture', type='pil')
# I found that it doesn't deal super well with multiple images, and demo ui had a bug where it included only the last image anyway
single_image_checkbox = gr.Checkbox(False, label='Embed all images, not only the last one')
# Prepare the input hijack
picture_select.upload(
lambda picture: input_hijack.update({"state": True, "value": partial(add_chat_picture, picture)}),
[picture_select],
None
)
picture_select.clear(lambda: input_hijack.update({"state": False, "value": ["",""]}), None, None)
single_image_checkbox.change(lambda x: params.update({"add_all_images_to_prompt": x}), single_image_checkbox, None)
shared.gradio['Generate'].click(lambda: None, None, picture_select)
shared.gradio['textbox'].submit(lambda: None, None, picture_select)