mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
103 lines
3.0 KiB
Python
103 lines
3.0 KiB
Python
import logging
|
|
|
|
import posthog
|
|
import torch
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
import chromadb
|
|
from chromadb.config import Settings
|
|
|
|
logging.info('Intercepting all calls to posthog :)')
|
|
posthog.capture = lambda *args, **kwargs: None
|
|
|
|
|
|
class Collecter():
|
|
def __init__(self):
|
|
pass
|
|
|
|
def add(self, texts: list[str]):
|
|
pass
|
|
|
|
def get(self, search_strings: list[str], n_results: int) -> list[str]:
|
|
pass
|
|
|
|
def clear(self):
|
|
pass
|
|
|
|
|
|
class Embedder():
|
|
def __init__(self):
|
|
pass
|
|
|
|
def embed(self, text: str) -> list[torch.Tensor]:
|
|
pass
|
|
|
|
|
|
class ChromaCollector(Collecter):
|
|
def __init__(self, embedder: Embedder):
|
|
super().__init__()
|
|
self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False))
|
|
self.embedder = embedder
|
|
self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed)
|
|
self.ids = []
|
|
|
|
def add(self, texts: list[str]):
|
|
if len(texts) == 0:
|
|
return
|
|
|
|
self.ids = [f"id{i}" for i in range(len(texts))]
|
|
self.collection.add(documents=texts, ids=self.ids)
|
|
|
|
def get_documents_and_ids(self, search_strings: list[str], n_results: int):
|
|
n_results = min(len(self.ids), n_results)
|
|
if n_results == 0:
|
|
return [], []
|
|
|
|
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])
|
|
documents = result['documents'][0]
|
|
ids = list(map(lambda x: int(x[2:]), result['ids'][0]))
|
|
return documents, ids
|
|
|
|
# Get chunks by similarity
|
|
def get(self, search_strings: list[str], n_results: int) -> list[str]:
|
|
documents, _ = self.get_documents_and_ids(search_strings, n_results)
|
|
return documents
|
|
|
|
# Get ids by similarity
|
|
def get_ids(self, search_strings: list[str], n_results: int) -> list[str]:
|
|
_, ids = self.get_documents_and_ids(search_strings, n_results)
|
|
return ids
|
|
|
|
# Get chunks by similarity and then sort by insertion order
|
|
def get_sorted(self, search_strings: list[str], n_results: int) -> list[str]:
|
|
documents, ids = self.get_documents_and_ids(search_strings, n_results)
|
|
return [x for _, x in sorted(zip(ids, documents))]
|
|
|
|
# Get ids by similarity and then sort by insertion order
|
|
def get_ids_sorted(self, search_strings: list[str], n_results: int) -> list[str]:
|
|
_, ids = self.get_documents_and_ids(search_strings, n_results)
|
|
return sorted(ids)
|
|
|
|
def clear(self):
|
|
self.collection.delete(ids=self.ids)
|
|
self.ids = []
|
|
|
|
|
|
class SentenceTransformerEmbedder(Embedder):
|
|
def __init__(self) -> None:
|
|
self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
|
self.embed = self.model.encode
|
|
|
|
|
|
def make_collector():
|
|
global embedder
|
|
return ChromaCollector(embedder)
|
|
|
|
|
|
def add_chunks_to_collector(chunks, collector):
|
|
collector.clear()
|
|
collector.add(chunks)
|
|
|
|
|
|
embedder = SentenceTransformerEmbedder()
|