mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-23 00:18:20 +01:00
23818dc098
Credits: vladmandic/automatic
380 lines
13 KiB
Python
380 lines
13 KiB
Python
import asyncio
|
|
import json
|
|
import logging
|
|
import os
|
|
import traceback
|
|
from threading import Thread
|
|
|
|
import speech_recognition as sr
|
|
import uvicorn
|
|
from fastapi import Depends, FastAPI, Header, HTTPException
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.requests import Request
|
|
from fastapi.responses import JSONResponse
|
|
from pydub import AudioSegment
|
|
from sse_starlette import EventSourceResponse
|
|
|
|
import extensions.openai.completions as OAIcompletions
|
|
import extensions.openai.embeddings as OAIembeddings
|
|
import extensions.openai.images as OAIimages
|
|
import extensions.openai.logits as OAIlogits
|
|
import extensions.openai.models as OAImodels
|
|
import extensions.openai.moderations as OAImoderations
|
|
from extensions.openai.errors import ServiceUnavailableError
|
|
from extensions.openai.tokens import token_count, token_decode, token_encode
|
|
from extensions.openai.utils import _start_cloudflared
|
|
from modules import shared
|
|
from modules.logging_colors import logger
|
|
from modules.models import unload_model
|
|
from modules.text_generation import stop_everything_event
|
|
|
|
from .typing import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
DecodeRequest,
|
|
DecodeResponse,
|
|
EmbeddingsRequest,
|
|
EmbeddingsResponse,
|
|
EncodeRequest,
|
|
EncodeResponse,
|
|
LoadLorasRequest,
|
|
LoadModelRequest,
|
|
LogitsRequest,
|
|
LogitsResponse,
|
|
LoraListResponse,
|
|
ModelInfoResponse,
|
|
ModelListResponse,
|
|
TokenCountResponse,
|
|
to_dict
|
|
)
|
|
|
|
params = {
|
|
'embedding_device': 'cpu',
|
|
'embedding_model': 'sentence-transformers/all-mpnet-base-v2',
|
|
'sd_webui_url': '',
|
|
'debug': 0
|
|
}
|
|
|
|
|
|
streaming_semaphore = asyncio.Semaphore(1)
|
|
|
|
|
|
def verify_api_key(authorization: str = Header(None)) -> None:
|
|
expected_api_key = shared.args.api_key
|
|
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"):
|
|
raise HTTPException(status_code=401, detail="Unauthorized")
|
|
|
|
|
|
def verify_admin_key(authorization: str = Header(None)) -> None:
|
|
expected_api_key = shared.args.admin_key
|
|
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"):
|
|
raise HTTPException(status_code=401, detail="Unauthorized")
|
|
|
|
|
|
app = FastAPI()
|
|
check_key = [Depends(verify_api_key)]
|
|
check_admin_key = [Depends(verify_admin_key)]
|
|
|
|
# Configure CORS settings to allow all origins, methods, and headers
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"]
|
|
)
|
|
|
|
|
|
@app.options("/", dependencies=check_key)
|
|
async def options_route():
|
|
return JSONResponse(content="OK")
|
|
|
|
|
|
@app.post('/v1/completions', response_model=CompletionResponse, dependencies=check_key)
|
|
async def openai_completions(request: Request, request_data: CompletionRequest):
|
|
path = request.url.path
|
|
is_legacy = "/generate" in path
|
|
|
|
if request_data.stream:
|
|
async def generator():
|
|
async with streaming_semaphore:
|
|
response = OAIcompletions.stream_completions(to_dict(request_data), is_legacy=is_legacy)
|
|
for resp in response:
|
|
disconnected = await request.is_disconnected()
|
|
if disconnected:
|
|
break
|
|
|
|
yield {"data": json.dumps(resp)}
|
|
|
|
return EventSourceResponse(generator()) # SSE streaming
|
|
|
|
else:
|
|
response = OAIcompletions.completions(to_dict(request_data), is_legacy=is_legacy)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post('/v1/chat/completions', response_model=ChatCompletionResponse, dependencies=check_key)
|
|
async def openai_chat_completions(request: Request, request_data: ChatCompletionRequest):
|
|
path = request.url.path
|
|
is_legacy = "/generate" in path
|
|
|
|
if request_data.stream:
|
|
async def generator():
|
|
async with streaming_semaphore:
|
|
response = OAIcompletions.stream_chat_completions(to_dict(request_data), is_legacy=is_legacy)
|
|
for resp in response:
|
|
disconnected = await request.is_disconnected()
|
|
if disconnected:
|
|
break
|
|
|
|
yield {"data": json.dumps(resp)}
|
|
|
|
return EventSourceResponse(generator()) # SSE streaming
|
|
|
|
else:
|
|
response = OAIcompletions.chat_completions(to_dict(request_data), is_legacy=is_legacy)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.get("/v1/models", dependencies=check_key)
|
|
@app.get("/v1/models/{model}", dependencies=check_key)
|
|
async def handle_models(request: Request):
|
|
path = request.url.path
|
|
is_list = request.url.path.split('?')[0].split('#')[0] == '/v1/models'
|
|
|
|
if is_list:
|
|
response = OAImodels.list_dummy_models()
|
|
else:
|
|
model_name = path[len('/v1/models/'):]
|
|
response = OAImodels.model_info_dict(model_name)
|
|
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.get('/v1/billing/usage', dependencies=check_key)
|
|
def handle_billing_usage():
|
|
'''
|
|
Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31
|
|
'''
|
|
return JSONResponse(content={"total_usage": 0})
|
|
|
|
|
|
@app.post('/v1/audio/transcriptions', dependencies=check_key)
|
|
async def handle_audio_transcription(request: Request):
|
|
r = sr.Recognizer()
|
|
|
|
form = await request.form()
|
|
audio_file = await form["file"].read()
|
|
audio_data = AudioSegment.from_file(audio_file)
|
|
|
|
# Convert AudioSegment to raw data
|
|
raw_data = audio_data.raw_data
|
|
|
|
# Create AudioData object
|
|
audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width)
|
|
whipser_language = form.getvalue('language', None)
|
|
whipser_model = form.getvalue('model', 'tiny') # Use the model from the form data if it exists, otherwise default to tiny
|
|
|
|
transcription = {"text": ""}
|
|
|
|
try:
|
|
transcription["text"] = r.recognize_whisper(audio_data, language=whipser_language, model=whipser_model)
|
|
except sr.UnknownValueError:
|
|
print("Whisper could not understand audio")
|
|
transcription["text"] = "Whisper could not understand audio UnknownValueError"
|
|
except sr.RequestError as e:
|
|
print("Could not request results from Whisper", e)
|
|
transcription["text"] = "Whisper could not understand audio RequestError"
|
|
|
|
return JSONResponse(content=transcription)
|
|
|
|
|
|
@app.post('/v1/images/generations', dependencies=check_key)
|
|
async def handle_image_generation(request: Request):
|
|
|
|
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')):
|
|
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.")
|
|
|
|
body = await request.json()
|
|
prompt = body['prompt']
|
|
size = body.get('size', '1024x1024')
|
|
response_format = body.get('response_format', 'url') # or b64_json
|
|
n = body.get('n', 1) # ignore the batch limits of max 10
|
|
|
|
response = await OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/embeddings", response_model=EmbeddingsResponse, dependencies=check_key)
|
|
async def handle_embeddings(request: Request, request_data: EmbeddingsRequest):
|
|
input = request_data.input
|
|
if not input:
|
|
raise HTTPException(status_code=400, detail="Missing required argument input")
|
|
|
|
if type(input) is str:
|
|
input = [input]
|
|
|
|
response = OAIembeddings.embeddings(input, request_data.encoding_format)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/moderations", dependencies=check_key)
|
|
async def handle_moderations(request: Request):
|
|
body = await request.json()
|
|
input = body["input"]
|
|
if not input:
|
|
raise HTTPException(status_code=400, detail="Missing required argument input")
|
|
|
|
response = OAImoderations.moderations(input)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/internal/encode", response_model=EncodeResponse, dependencies=check_key)
|
|
async def handle_token_encode(request_data: EncodeRequest):
|
|
response = token_encode(request_data.text)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/internal/decode", response_model=DecodeResponse, dependencies=check_key)
|
|
async def handle_token_decode(request_data: DecodeRequest):
|
|
response = token_decode(request_data.tokens)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/internal/token-count", response_model=TokenCountResponse, dependencies=check_key)
|
|
async def handle_token_count(request_data: EncodeRequest):
|
|
response = token_count(request_data.text)
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/internal/logits", response_model=LogitsResponse, dependencies=check_key)
|
|
async def handle_logits(request_data: LogitsRequest):
|
|
'''
|
|
Given a prompt, returns the top 50 most likely logits as a dict.
|
|
The keys are the tokens, and the values are the probabilities.
|
|
'''
|
|
response = OAIlogits._get_next_logits(to_dict(request_data))
|
|
return JSONResponse(response)
|
|
|
|
|
|
@app.post("/v1/internal/stop-generation", dependencies=check_key)
|
|
async def handle_stop_generation(request: Request):
|
|
stop_everything_event()
|
|
return JSONResponse(content="OK")
|
|
|
|
|
|
@app.get("/v1/internal/model/info", response_model=ModelInfoResponse, dependencies=check_key)
|
|
async def handle_model_info():
|
|
payload = OAImodels.get_current_model_info()
|
|
return JSONResponse(content=payload)
|
|
|
|
|
|
@app.get("/v1/internal/model/list", response_model=ModelListResponse, dependencies=check_admin_key)
|
|
async def handle_list_models():
|
|
payload = OAImodels.list_models()
|
|
return JSONResponse(content=payload)
|
|
|
|
|
|
@app.post("/v1/internal/model/load", dependencies=check_admin_key)
|
|
async def handle_load_model(request_data: LoadModelRequest):
|
|
'''
|
|
This endpoint is experimental and may change in the future.
|
|
|
|
The "args" parameter can be used to modify flags like "--load-in-4bit"
|
|
or "--n-gpu-layers" before loading a model. Example:
|
|
|
|
```
|
|
"args": {
|
|
"load_in_4bit": true,
|
|
"n_gpu_layers": 12
|
|
}
|
|
```
|
|
|
|
Note that those settings will remain after loading the model. So you
|
|
may need to change them back to load a second model.
|
|
|
|
The "settings" parameter is also a dict but with keys for the
|
|
shared.settings object. It can be used to modify the default instruction
|
|
template like this:
|
|
|
|
```
|
|
"settings": {
|
|
"instruction_template": "Alpaca"
|
|
}
|
|
```
|
|
'''
|
|
|
|
try:
|
|
OAImodels._load_model(to_dict(request_data))
|
|
return JSONResponse(content="OK")
|
|
except:
|
|
traceback.print_exc()
|
|
return HTTPException(status_code=400, detail="Failed to load the model.")
|
|
|
|
|
|
@app.post("/v1/internal/model/unload", dependencies=check_admin_key)
|
|
async def handle_unload_model():
|
|
unload_model()
|
|
|
|
|
|
@app.get("/v1/internal/lora/list", response_model=LoraListResponse, dependencies=check_admin_key)
|
|
async def handle_list_loras():
|
|
response = OAImodels.list_loras()
|
|
return JSONResponse(content=response)
|
|
|
|
|
|
@app.post("/v1/internal/lora/load", dependencies=check_admin_key)
|
|
async def handle_load_loras(request_data: LoadLorasRequest):
|
|
try:
|
|
OAImodels.load_loras(request_data.lora_names)
|
|
return JSONResponse(content="OK")
|
|
except:
|
|
traceback.print_exc()
|
|
return HTTPException(status_code=400, detail="Failed to apply the LoRA(s).")
|
|
|
|
|
|
@app.post("/v1/internal/lora/unload", dependencies=check_admin_key)
|
|
async def handle_unload_loras():
|
|
OAImodels.unload_all_loras()
|
|
return JSONResponse(content="OK")
|
|
|
|
|
|
def run_server():
|
|
server_addr = '0.0.0.0' if shared.args.listen else '127.0.0.1'
|
|
port = int(os.environ.get('OPENEDAI_PORT', shared.args.api_port))
|
|
|
|
ssl_certfile = os.environ.get('OPENEDAI_CERT_PATH', shared.args.ssl_certfile)
|
|
ssl_keyfile = os.environ.get('OPENEDAI_KEY_PATH', shared.args.ssl_keyfile)
|
|
|
|
if shared.args.public_api:
|
|
def on_start(public_url: str):
|
|
logger.info(f'OpenAI-compatible API URL:\n\n{public_url}\n')
|
|
|
|
_start_cloudflared(port, shared.args.public_api_id, max_attempts=3, on_start=on_start)
|
|
else:
|
|
if ssl_keyfile and ssl_certfile:
|
|
logger.info(f'OpenAI-compatible API URL:\n\nhttps://{server_addr}:{port}\n')
|
|
else:
|
|
logger.info(f'OpenAI-compatible API URL:\n\nhttp://{server_addr}:{port}\n')
|
|
|
|
if shared.args.api_key:
|
|
if not shared.args.admin_key:
|
|
shared.args.admin_key = shared.args.api_key
|
|
|
|
logger.info(f'OpenAI API key:\n\n{shared.args.api_key}\n')
|
|
|
|
if shared.args.admin_key and shared.args.admin_key != shared.args.api_key:
|
|
logger.info(f'OpenAI API admin key (for loading/unloading models):\n\n{shared.args.admin_key}\n')
|
|
|
|
logging.getLogger("uvicorn.error").propagate = False
|
|
uvicorn.run(app, host=server_addr, port=port, ssl_certfile=ssl_certfile, ssl_keyfile=ssl_keyfile)
|
|
|
|
|
|
def setup():
|
|
if shared.args.nowebui:
|
|
run_server()
|
|
else:
|
|
Thread(target=run_server, daemon=True).start()
|