mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-05 18:44:59 +01:00
209 lines
9.4 KiB
Python
209 lines
9.4 KiB
Python
"""
|
|
This module is responsible for processing the corpus and feeding it into chromaDB. It will receive a corpus of text.
|
|
It will then split it into chunks of specified length. For each of those chunks, it will append surrounding context.
|
|
It will only include full words.
|
|
"""
|
|
|
|
import re
|
|
import bisect
|
|
|
|
import extensions.superboogav2.parameters as parameters
|
|
|
|
from .data_preprocessor import TextPreprocessorBuilder, TextSummarizer
|
|
from .chromadb import ChromaCollector
|
|
|
|
def preprocess_text_no_summary(text) -> str:
|
|
builder = TextPreprocessorBuilder(text)
|
|
if parameters.should_to_lower():
|
|
builder.to_lower()
|
|
|
|
if parameters.should_remove_punctuation():
|
|
builder.remove_punctuation()
|
|
|
|
if parameters.should_remove_specific_pos():
|
|
builder.remove_specific_pos()
|
|
|
|
if parameters.should_remove_stopwords():
|
|
builder.remove_stopwords
|
|
|
|
if parameters.should_lemmatize():
|
|
builder.lemmatize()
|
|
|
|
if parameters.should_merge_spaces():
|
|
builder.merge_spaces
|
|
|
|
if parameters.should_strip():
|
|
builder.strip()
|
|
|
|
if parameters.get_num_conversion_strategy():
|
|
if parameters.get_num_conversion_strategy() == parameters.NUM_TO_WORD_METHOD:
|
|
builder.num_to_word(parameters.get_min_num_length())
|
|
elif parameters.get_num_conversion_strategy() == parameters.NUM_TO_CHAR_METHOD:
|
|
builder.num_to_char(parameters.get_min_num_length())
|
|
elif parameters.get_num_conversion_strategy() == parameters.NUM_TO_CHAR_LONG_METHOD:
|
|
builder.num_to_char_long(parameters.get_min_num_length())
|
|
|
|
return builder.build()
|
|
|
|
|
|
def preprocess_text(text) -> list[str]:
|
|
important_sentences = TextSummarizer.process_long_text(text, parameters.get_min_num_sentences())
|
|
return [preprocess_text_no_summary(sent) for sent in important_sentences]
|
|
|
|
|
|
def _create_chunks_with_context(corpus, chunk_len, context_left, context_right):
|
|
"""
|
|
This function takes a corpus of text and splits it into chunks of a specified length,
|
|
then adds a specified amount of context to each chunk. The context is added by first
|
|
going backwards from the start of the chunk and then going forwards from the end of the
|
|
chunk, ensuring that the context includes only whole words and that the total context length
|
|
does not exceed the specified limit. This function uses binary search for efficiency.
|
|
|
|
Returns:
|
|
chunks (list of str): The chunks of text.
|
|
chunks_with_context (list of str): The chunks of text with added context.
|
|
chunk_with_context_start_indices (list of int): The starting indices of each chunk with context in the corpus.
|
|
"""
|
|
words = re.split('(\\s+)', corpus)
|
|
word_start_indices = [0]
|
|
current_index = 0
|
|
|
|
for word in words:
|
|
current_index += len(word)
|
|
word_start_indices.append(current_index)
|
|
|
|
chunks, chunk_lengths, chunk_start_indices, chunk_with_context_start_indices = [], [], [], []
|
|
current_length = 0
|
|
current_index = 0
|
|
chunk = []
|
|
|
|
for word in words:
|
|
if current_length + len(word) > chunk_len:
|
|
chunks.append(''.join(chunk))
|
|
chunk_lengths.append(current_length)
|
|
chunk_start_indices.append(current_index - current_length)
|
|
chunk = [word]
|
|
current_length = len(word)
|
|
else:
|
|
chunk.append(word)
|
|
current_length += len(word)
|
|
current_index += len(word)
|
|
|
|
if chunk:
|
|
chunks.append(''.join(chunk))
|
|
chunk_lengths.append(current_length)
|
|
chunk_start_indices.append(current_index - current_length)
|
|
|
|
chunks_with_context = []
|
|
for start_index, chunk_length in zip(chunk_start_indices, chunk_lengths):
|
|
context_start_index = bisect.bisect_right(word_start_indices, start_index - context_left)
|
|
context_end_index = bisect.bisect_left(word_start_indices, start_index + chunk_length + context_right)
|
|
|
|
# Combine all the words in the context range (before, chunk, and after)
|
|
chunk_with_context = ''.join(words[context_start_index:context_end_index])
|
|
chunks_with_context.append(chunk_with_context)
|
|
|
|
# Determine the start index of the chunk with context
|
|
chunk_with_context_start_index = word_start_indices[context_start_index]
|
|
chunk_with_context_start_indices.append(chunk_with_context_start_index)
|
|
|
|
return chunks, chunks_with_context, chunk_with_context_start_indices
|
|
|
|
|
|
def _clear_chunks(data_chunks, data_chunks_with_context, data_chunk_starting_indices):
|
|
distinct_data_chunks = []
|
|
distinct_data_chunks_with_context = []
|
|
distinct_data_chunk_starting_indices = []
|
|
|
|
seen_chunks = dict()
|
|
|
|
for chunk, context, index in zip(data_chunks, data_chunks_with_context, data_chunk_starting_indices):
|
|
# Skip the chunk if it does not contain any alphanumeric characters
|
|
if not any(char.isalnum() for char in chunk):
|
|
continue
|
|
|
|
seen_chunk_start = seen_chunks.get(chunk)
|
|
if seen_chunk_start:
|
|
# If we've already seen this exact chunk, and the context around it it very close to the seen chunk, then skip it.
|
|
if abs(seen_chunk_start-index) < parameters.get_delta_start():
|
|
continue
|
|
|
|
distinct_data_chunks.append(chunk)
|
|
distinct_data_chunks_with_context.append(context)
|
|
distinct_data_chunk_starting_indices.append(index)
|
|
|
|
seen_chunks[chunk] = index
|
|
|
|
return distinct_data_chunks, distinct_data_chunks_with_context, distinct_data_chunk_starting_indices
|
|
|
|
|
|
def process_and_add_to_collector(corpus: str, collector: ChromaCollector, clear_collector_before_adding: bool, metadata: dict):
|
|
# Defining variables
|
|
chunk_lens = [int(len.strip()) for len in parameters.get_chunk_len().split(',')]
|
|
context_len = [int(len.strip()) for len in parameters.get_context_len().split(',')]
|
|
if len(context_len) >= 3:
|
|
raise f"Context len has too many values: {len(context_len)}"
|
|
if len(context_len) == 2:
|
|
context_left = context_len[0]
|
|
context_right = context_len[1]
|
|
else:
|
|
context_left = context_right = context_len[0]
|
|
|
|
data_chunks = []
|
|
data_chunks_with_context = []
|
|
data_chunk_starting_indices = []
|
|
|
|
# Handling chunk_regex
|
|
if parameters.get_chunk_regex():
|
|
if parameters.get_chunk_separator():
|
|
cumulative_length = 0 # This variable will store the length of the processed corpus
|
|
sections = corpus.split(parameters.get_chunk_separator())
|
|
for section in sections:
|
|
special_chunks = list(re.finditer(parameters.get_chunk_regex(), section))
|
|
for match in special_chunks:
|
|
chunk = match.group(0)
|
|
start_index = match.start()
|
|
end_index = start_index + len(chunk)
|
|
context = section[max(0, start_index - context_left):min(len(section), end_index + context_right)]
|
|
data_chunks.append(chunk)
|
|
data_chunks_with_context.append(context)
|
|
data_chunk_starting_indices.append(cumulative_length + max(0, start_index - context_left))
|
|
cumulative_length += len(section) + len(parameters.get_chunk_separator()) # Update the length of the processed corpus
|
|
else:
|
|
special_chunks = list(re.finditer(parameters.get_chunk_regex(), corpus))
|
|
for match in special_chunks:
|
|
chunk = match.group(0)
|
|
start_index = match.start()
|
|
end_index = start_index + len(chunk)
|
|
context = corpus[max(0, start_index - context_left):min(len(corpus), end_index + context_right)]
|
|
data_chunks.append(chunk)
|
|
data_chunks_with_context.append(context)
|
|
data_chunk_starting_indices.append(max(0, start_index - context_left))
|
|
|
|
for chunk_len in chunk_lens:
|
|
# Breaking the data into chunks and adding those to the db
|
|
if parameters.get_chunk_separator():
|
|
cumulative_length = 0 # This variable will store the length of the processed corpus
|
|
sections = corpus.split(parameters.get_chunk_separator())
|
|
for section in sections:
|
|
chunks, chunks_with_context, context_start_indices = _create_chunks_with_context(section, chunk_len, context_left, context_right)
|
|
context_start_indices = [cumulative_length + i for i in context_start_indices] # Add the length of the processed corpus to each start index
|
|
data_chunks.extend(chunks)
|
|
data_chunks_with_context.extend(chunks_with_context)
|
|
data_chunk_starting_indices.extend(context_start_indices)
|
|
cumulative_length += len(section) + len(parameters.get_chunk_separator()) # Update the length of the processed corpus
|
|
else:
|
|
chunks, chunks_with_context, context_start_indices = _create_chunks_with_context(corpus, chunk_len, context_left, context_right)
|
|
data_chunks.extend(chunks)
|
|
data_chunks_with_context.extend(chunks_with_context)
|
|
data_chunk_starting_indices.extend(context_start_indices)
|
|
|
|
data_chunks = [preprocess_text_no_summary(chunk) for chunk in data_chunks]
|
|
|
|
data_chunks, data_chunks_with_context, data_chunk_starting_indices = _clear_chunks(
|
|
data_chunks, data_chunks_with_context, data_chunk_starting_indices
|
|
)
|
|
|
|
if clear_collector_before_adding:
|
|
collector.clear()
|
|
collector.add(data_chunks, data_chunks_with_context, data_chunk_starting_indices, [metadata]*len(data_chunks) if metadata is not None else None) |