mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-14 22:39:06 +01:00
115 lines
3.9 KiB
Python
115 lines
3.9 KiB
Python
import torch
|
|
from numba import njit
|
|
|
|
from modules import shared
|
|
|
|
|
|
def process_llamacpp_cache(model, new_sequence, past_sequence):
|
|
if len(past_sequence) == 0 or len(new_sequence) == 0:
|
|
return past_sequence
|
|
|
|
i1, i2, j1, j2 = find_longest_common_substring_indices(past_sequence, new_sequence)
|
|
overlap_length = i2 - i1 + 1
|
|
|
|
# Do StreamingLLM if i1 > 0 (ie the longest common subsequence is not a prefix)
|
|
# and the overlap length is sufficiently long.
|
|
if i1 > 0 and overlap_length > 0.2 * len(new_sequence):
|
|
|
|
new_sequence = torch.tensor(new_sequence)
|
|
past_sequence = torch.tensor(past_sequence)
|
|
|
|
prefix_length = find_prefix_length(past_sequence[:i1], new_sequence[:j1])
|
|
sink_length = prefix_length
|
|
if sink_length < shared.args.attention_sink_size:
|
|
sink_length = shared.args.attention_sink_size
|
|
|
|
removed_length = i1 - sink_length
|
|
|
|
matching_prefix = past_sequence[:prefix_length]
|
|
removed_chunk = past_sequence[sink_length:i1]
|
|
overlapping_sequence = new_sequence[j1:j2 + 1]
|
|
added_chunk = new_sequence[j2 + 1:]
|
|
|
|
# print(past_sequence)
|
|
# print(new_sequence)
|
|
|
|
print()
|
|
print('MATCHING PREFIX=', repr(shared.tokenizer.decode(matching_prefix)))
|
|
print('ADDED CHUNK=', repr(shared.tokenizer.decode(added_chunk)))
|
|
print('REMOVED CHUNK=', repr(shared.tokenizer.decode(removed_chunk)))
|
|
print()
|
|
|
|
# Remove interval [sink_length, sink_length + removed_length) from the context
|
|
# Subtract removed_length from model.n_tokens
|
|
model._ctx.kv_cache_seq_rm(0, sink_length, sink_length + removed_length)
|
|
model._ctx.kv_cache_seq_shift(0, sink_length + removed_length, -1, -removed_length)
|
|
|
|
new_sequence = new_sequence.tolist()
|
|
model.input_ids[:j2 + 1] = new_sequence[:j2 + 1]
|
|
model.n_tokens = j2 + 1
|
|
|
|
return new_sequence[:j2 + 1]
|
|
else:
|
|
return past_sequence
|
|
|
|
|
|
def find_prefix_length(past_seq, seq_tensor):
|
|
'''
|
|
Given two torch tensors, finds the length of the longest
|
|
common prefix between the two.
|
|
'''
|
|
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
|
|
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
|
|
if len(indices) > 0:
|
|
prefix_length = indices[0].item()
|
|
else:
|
|
prefix_length = min_length
|
|
|
|
return prefix_length
|
|
|
|
|
|
@njit
|
|
def find_longest_common_substring_indices(list1, list2):
|
|
'''
|
|
Given two lists, solves the Longest Common Substring problem.
|
|
|
|
It returns the indices where the substring starts and ends in
|
|
s1 and s2.
|
|
|
|
Example:
|
|
|
|
ir, jr, ir2, jr2 = find_longest_common_substring_indices(s1, s2)
|
|
print(s1[ir:jr + 1])
|
|
print(s2[ir2:jr2 + 1])
|
|
|
|
Adapted from
|
|
https://rosettacode.org/wiki/Longest_common_substring#Python
|
|
'''
|
|
|
|
len_list1, len_list2 = len(list1), len(list2)
|
|
start_index_list1, end_index_list1 = 0, -1
|
|
start_index_list2, end_index_list2 = 0, -1
|
|
|
|
# for index1 in tqdm(range(0, len_list1), desc="StreamingLLM prompt comparison", leave=False):
|
|
for index1 in range(0, len_list1):
|
|
try:
|
|
index2 = list2.index(list1[index1])
|
|
except:
|
|
continue
|
|
|
|
while index2 >= 0:
|
|
temp_index1, temp_index2 = index1, index2
|
|
while temp_index1 < len_list1 and temp_index2 < len_list2 and list2[temp_index2] == list1[temp_index1]:
|
|
if temp_index1 - index1 >= end_index_list1 - start_index_list1:
|
|
start_index_list1, end_index_list1 = index1, temp_index1
|
|
start_index_list2, end_index_list2 = index2, temp_index2
|
|
|
|
temp_index1 += 1
|
|
temp_index2 += 1
|
|
try:
|
|
index2 = list2.index(list1[index1], index2 + 1)
|
|
except:
|
|
break
|
|
|
|
return start_index_list1, end_index_list1, start_index_list2, end_index_list2
|