text-generation-webui/server.py
2023-01-28 23:21:40 -03:00

733 lines
36 KiB
Python

import re
import gc
import time
import glob
import torch
import argparse
import json
import io
import base64
import sys
from sys import exit
from pathlib import Path
from PIL import Image
import copy
import gradio as gr
import warnings
from tqdm import tqdm
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
from modules.html_generator import *
from modules.ui import *
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
transformers.logging.set_verbosity_error()
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.')
parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode.')
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
parser.add_argument('--disk-cache-dir', type=str, help='Directory to save the disk cache to. Defaults to "cache/".')
parser.add_argument('--gpu-memory', type=int, help='Maximum GPU memory in GiB to allocate. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.')
parser.add_argument('--cpu-memory', type=int, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time. This improves the text generation performance.')
parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example.')
parser.add_argument('--extensions', type=str, help='The list of extensions to load. If you want to load more than one extension, write the names separated by commas and between quotation marks, "like,this".')
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
parser.add_argument('--listen-port', type=int, help='The listening port the server will use.')
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
args = parser.parse_args()
if (args.chat or args.cai_chat) and not args.no_stream:
print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
settings = {
'max_new_tokens': 200,
'max_new_tokens_min': 1,
'max_new_tokens_max': 2000,
'preset': 'NovelAI-Sphinx Moth',
'name1': 'Person 1',
'name2': 'Person 2',
'context': 'This is a conversation between two people.',
'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
'stop_at_newline': True,
'history_size': 0,
'history_size_min': 0,
'history_size_max': 64,
'preset_pygmalion': 'Pygmalion',
'name1_pygmalion': 'You',
'name2_pygmalion': 'Kawaii',
'context_pygmalion': "Kawaii's persona: Kawaii is a cheerful person who loves to make others smile. She is an optimist who loves to spread happiness and positivity wherever she goes.\n<START>",
'stop_at_newline_pygmalion': False,
}
if args.settings is not None and Path(args.settings).exists():
with open(Path(args.settings), 'r') as f:
new_settings = json.load(f)
for item in new_settings:
settings[item] = new_settings[item]
def load_model(model_name):
print(f"Loading {model_name}...")
t0 = time.time()
# Default settings
if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.gpu_memory is not None):
if Path(f"torch-dumps/{model_name}.pt").exists():
print("Loading in .pt format...")
model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
else:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
# Custom
else:
settings = ["low_cpu_mem_usage=True"]
command = "AutoModelForCausalLM.from_pretrained"
if args.cpu:
settings.append("torch_dtype=torch.float32")
else:
settings.append("device_map='auto'")
if args.gpu_memory is not None:
if args.cpu_memory is not None:
settings.append(f"max_memory={{0: '{args.gpu_memory}GiB', 'cpu': '{args.cpu_memory}GiB'}}")
else:
settings.append(f"max_memory={{0: '{args.gpu_memory}GiB', 'cpu': '99GiB'}}")
if args.disk:
if args.disk_cache_dir is not None:
settings.append(f"offload_folder='{args.disk_cache_dir}'")
else:
settings.append("offload_folder='cache'")
if args.load_in_8bit:
settings.append("load_in_8bit=True")
else:
settings.append("torch_dtype=torch.float16")
settings = ', '.join(set(settings))
command = f"{command}(Path(f'models/{model_name}'), {settings})"
model = eval(command)
# Loading the tokenizer
if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
else:
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
tokenizer.truncation_side = 'left'
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
for i in range(10):
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
s = re.sub("--- [0-9]*\n *\n---", "---", s)
s = re.sub("--- [0-9]*\n\n\n---", "---", s)
return s
# Fix the LaTeX equations in galactica
def fix_galactica(s):
s = s.replace(r'\[', r'$')
s = s.replace(r'\]', r'$')
s = s.replace(r'\(', r'$')
s = s.replace(r'\)', r'$')
s = s.replace(r'$$', r'$')
return s
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
if args.cpu:
input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=2048-tokens_to_generate, add_special_tokens=add_special_tokens)
else:
torch.cuda.empty_cache()
input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=2048-tokens_to_generate, add_special_tokens=add_special_tokens).cuda()
return input_ids
def decode(output_ids):
reply = tokenizer.decode(output_ids, skip_special_tokens=True)
reply = reply.replace(r'<|endoftext|>', '')
return reply
def formatted_outputs(reply, model_name):
if not (args.chat or args.cai_chat):
if model_name.lower().startswith('galactica'):
reply = fix_galactica(reply)
return reply, reply, generate_basic_html(reply)
elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
reply = fix_gpt4chan(reply)
return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
else:
return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
else:
return reply
def generate_reply(question, tokens, inference_settings, selected_model, eos_token=None, stopping_string=None):
global model, tokenizer, model_name, loaded_preset, preset
original_question = question
if not (args.chat or args.cai_chat):
question = apply_extensions(question, "input")
if args.verbose:
print(f"\n\n{question}\n--------------------\n")
if selected_model != model_name:
model_name = selected_model
model = tokenizer = None
if not args.cpu:
gc.collect()
torch.cuda.empty_cache()
model, tokenizer = load_model(model_name)
if inference_settings != loaded_preset:
with open(Path(f'presets/{inference_settings}.txt'), 'r') as infile:
preset = infile.read()
loaded_preset = inference_settings
cuda = "" if args.cpu else ".cuda()"
n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
input_ids = encode(question, tokens)
if stopping_string is not None:
# The stopping_criteria code below was copied from
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
t = encode(stopping_string, 0, add_special_tokens=False)
stopping_criteria_list = transformers.StoppingCriteriaList([
_SentinelTokenStoppingCriteria(
sentinel_token_ids=t,
starting_idx=len(input_ids[0])
)
])
else:
stopping_criteria_list = None
# Generate the entire reply at once
if args.no_stream:
t0 = time.time()
output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset}){cuda}")
reply = decode(output[0])
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output[0])-len(input_ids[0]))/(t1-t0):.2f} it/s)")
if not (args.chat or args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
yield formatted_outputs(reply, model_name)
# Generate the reply 1 token at a time
else:
yield formatted_outputs(original_question, model_name)
preset = preset.replace('max_new_tokens=tokens', 'max_new_tokens=8')
for i in tqdm(range(tokens//8+1)):
output = eval(f"model.generate(input_ids, eos_token_id={n}, stopping_criteria=stopping_criteria_list, {preset}){cuda}")
reply = decode(output[0])
if not (args.chat or args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
yield formatted_outputs(reply, model_name)
input_ids = output
if output[0][-1] == n:
break
def apply_extensions(text, typ):
global available_extensions, extension_state
for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
if extension_state[ext][0] == True:
ext_string = f"extensions.{ext}.script"
if typ == "input":
text = eval(f"{ext_string}.input_modifier(text)")
else:
text = eval(f"{ext_string}.output_modifier(text)")
return text
def get_available_models():
return sorted(set([item.replace('.pt', '') for item in map(lambda x : str(x.name), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*'))) if not item.endswith('.txt')]), key=str.lower)
def get_available_presets():
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
def get_available_characters():
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
def get_available_extensions():
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
available_models = get_available_models()
available_presets = get_available_presets()
available_characters = get_available_characters()
available_extensions = get_available_extensions()
extension_state = {}
if args.extensions is not None:
for i,ext in enumerate(args.extensions.split(',')):
if ext in available_extensions:
print(f'Loading the extension "{ext}"... ', end='')
ext_string = f"extensions.{ext}.script"
exec(f"import {ext_string}")
extension_state[ext] = [True, i]
print(f'Ok.')
# Choosing the default model
if args.model is not None:
model_name = args.model
else:
if len(available_models) == 0:
print("No models are available! Please download at least one.")
exit(0)
elif len(available_models) == 1:
i = 0
else:
print("The following models are available:\n")
for i,model in enumerate(available_models):
print(f"{i+1}. {model}")
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
i = int(input())-1
print()
model_name = available_models[i]
model, tokenizer = load_model(model_name)
loaded_preset = None
# UI settings
default_text = settings['prompt_gpt4chan'] if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) else settings['prompt']
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
css = ".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem} #refresh-button {flex: none; margin: 0; padding: 0; min-width: 50px; border: none; box-shadow: none; border-radius: 0} #download-label, #upload-label {min-height: 0}"
if args.chat or args.cai_chat:
history = {'internal': [], 'visible': []}
character = None
# This gets the new line characters right.
def clean_chat_message(text):
text = text.replace('\n', '\n\n')
text = re.sub(r"\n{3,}", "\n\n", text)
text = text.strip()
return text
def generate_chat_prompt(text, tokens, name1, name2, context, history_size):
text = clean_chat_message(text)
rows = [f"{context.strip()}\n"]
i = len(history['internal'])-1
count = 0
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < 2048-tokens:
rows.insert(1, f"{name2}: {history['internal'][i][1].strip()}\n")
count += 1
if not (history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
rows.insert(1, f"{name1}: {history['internal'][i][0].strip()}\n")
count += 1
i -= 1
if history_size != 0 and count >= history_size:
break
rows.append(f"{name1}: {text}\n")
rows.append(f"{name2}:")
while len(rows) > 3 and len(encode(''.join(rows), tokens)[0]) >= 2048-tokens:
rows.pop(1)
rows.pop(1)
question = ''.join(rows)
return question
def chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
original_text = text
text = apply_extensions(text, "input")
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
history['internal'].append(['', ''])
history['visible'].append(['', ''])
eos_token = '\n' if check else None
for reply in generate_reply(question, tokens, inference_settings, selected_model, eos_token=eos_token, stopping_string=f"\n{name1}:"):
next_character_found = False
previous_idx = [m.start() for m in re.finditer(f"(^|\n){name2}:", question)]
idx = [m.start() for m in re.finditer(f"(^|\n){name2}:", reply)]
idx = idx[len(previous_idx)-1]
reply = reply[idx + len(f"\n{name2}:"):]
if check:
reply = reply.split('\n')[0].strip()
else:
idx = reply.find(f"\n{name1}:")
if idx != -1:
reply = reply[:idx]
next_character_found = True
reply = clean_chat_message(reply)
history['internal'][-1] = [text, reply]
history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
if next_character_found:
break
# Prevent the chat log from flashing if something like "\nYo" is generated just
# before "\nYou:" is completed
tmp = f"\n{name1}:"
next_character_substring_found = False
for j in range(1, len(tmp)):
if reply[-j:] == tmp[:j]:
next_character_substring_found = True
if not next_character_substring_found:
yield history['visible']
yield history['visible']
def cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
for _history in chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
yield generate_chat_html(_history, name1, name2, character)
def regenerate_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
last = history['visible'].pop()
history['internal'].pop()
text = last[0]
if args.cai_chat:
for i in cai_chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
yield i
else:
for i in chatbot_wrapper(text, tokens, inference_settings, selected_model, name1, name2, context, check, history_size):
yield i
def remove_last_message(name1, name2):
if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
last = history['visible'].pop()
history['internal'].pop()
else:
last = ['', '']
if args.cai_chat:
return generate_chat_html(history['visible'], name1, name2, character), last[0]
else:
return history['visible'], last[0]
def clear_html():
return generate_chat_html([], "", "", character)
def clear_chat_log(_character, name1, name2):
global history
if _character != 'None':
for i in range(len(history['internal'])):
if '<|BEGIN-VISIBLE-CHAT|>' in history['internal'][i][0]:
history['visible'] = [['', history['internal'][i][1]]]
history['internal'] = history['internal'][:i+1]
break
else:
history['internal'] = []
history['visible'] = []
if args.cai_chat:
return generate_chat_html(history['visible'], name1, name2, character)
else:
return history['visible']
def redraw_html(name1, name2):
global history
return generate_chat_html(history['visible'], name1, name2, character)
def tokenize_dialogue(dialogue, name1, name2):
_history = []
dialogue = re.sub('<START>', '', dialogue)
dialogue = re.sub('<start>', '', dialogue)
dialogue = re.sub('(\n|^)[Aa]non:', '\\1You:', dialogue)
dialogue = re.sub('(\n|^)\[CHARACTER\]:', f'\\1{name2}:', dialogue)
idx = [m.start() for m in re.finditer(f"(^|\n)({name1}|{name2}):", dialogue)]
if len(idx) == 0:
return _history
messages = []
for i in range(len(idx)-1):
messages.append(dialogue[idx[i]:idx[i+1]].strip())
messages.append(dialogue[idx[-1]:].strip())
entry = ['', '']
for i in messages:
if i.startswith(f'{name1}:'):
entry[0] = i[len(f'{name1}:'):].strip()
elif i.startswith(f'{name2}:'):
entry[1] = i[len(f'{name2}:'):].strip()
if not (len(entry[0]) == 0 and len(entry[1]) == 0):
_history.append(entry)
entry = ['', '']
print(f"\nDialogue tokenized to (formatted as [question, reply]):\n\n", end='')
for i in _history:
print(i)
print("--------------------\n", end='')
return _history
def save_history():
if not Path('logs').exists():
Path('logs').mkdir()
with open(Path('logs/conversation.json'), 'w') as f:
f.write(json.dumps({'data': history['internal'], 'data_visible': history['visible']}))
return Path('logs/conversation.json')
def upload_history(file, name1, name2):
global history
file = file.decode('utf-8')
try:
j = json.loads(file)
if 'data' in j:
history['internal'] = j['data']
if 'data_visible' in j:
history['visible'] = j['data_visible']
else:
history['visible'] = copy.deepcopy(history['internal'])
# Compatibility with Pygmalion AI's official web UI
elif 'chat' in j:
history['internal'] = [':'.join(x.split(':')[1:]).strip() for x in j['chat']]
if len(j['chat']) > 0 and j['chat'][0].startswith(f'{name2}:'):
history['internal'] = [['<|BEGIN-VISIBLE-CHAT|>', history['internal'][0]]] + [[history['internal'][i], history['internal'][i+1]] for i in range(1, len(history['internal'])-1, 2)]
else:
history['internal'] = [[history['internal'][i], history['internal'][i+1]] for i in range(0, len(history['internal'])-1, 2)]
except:
history['internal'] = tokenize_dialogue(file, name1, name2)
history['visible'] = copy.deepcopy(history['internal'])
def load_character(_character, name1, name2):
global history, character
context = ""
history['internal'] = []
history['visible'] = []
if _character != 'None':
character = _character
with open(Path(f'characters/{_character}.json'), 'r') as f:
data = json.loads(f.read())
name2 = data['char_name']
if 'char_persona' in data and data['char_persona'] != '':
context += f"{data['char_name']}'s Persona: {data['char_persona']}\n"
if 'world_scenario' in data and data['world_scenario'] != '':
context += f"Scenario: {data['world_scenario']}\n"
context = f"{context.strip()}\n<START>\n"
if 'example_dialogue' in data and data['example_dialogue'] != '':
history['internal'] = tokenize_dialogue(data['example_dialogue'], name1, name2)
if 'char_greeting' in data and len(data['char_greeting'].strip()) > 0:
history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', data['char_greeting']]]
history['visible'] += [['', data['char_greeting']]]
else:
history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', "Hello there!"]]
history['visible'] += [['', "Hello there!"]]
else:
character = None
context = settings['context_pygmalion']
name2 = settings['name2_pygmalion']
if args.cai_chat:
return name2, context, generate_chat_html(history['visible'], name1, name2, character)
else:
return name2, context, history['visible']
def upload_character(json_file, img, tavern=False):
json_file = json_file if type(json_file) == str else json_file.decode('utf-8')
data = json.loads(json_file)
outfile_name = data["char_name"]
i = 1
while Path(f'characters/{outfile_name}.json').exists():
outfile_name = f'{data["char_name"]}_{i:03d}'
i += 1
if tavern:
outfile_name = f'TavernAI-{outfile_name}'
with open(Path(f'characters/{outfile_name}.json'), 'w') as f:
f.write(json_file)
if img is not None:
img = Image.open(io.BytesIO(img))
img.save(Path(f'characters/{outfile_name}.png'))
print(f'New character saved to "characters/{outfile_name}.json".')
return outfile_name
def upload_tavern_character(img, name1, name2):
_img = Image.open(io.BytesIO(img))
_img.getexif()
decoded_string = base64.b64decode(_img.info['chara'])
_json = json.loads(decoded_string)
_json = {"char_name": _json['name'], "char_persona": _json['description'], "char_greeting": _json["first_mes"], "example_dialogue": _json['mes_example'], "world_scenario": _json['scenario']}
_json['example_dialogue'] = _json['example_dialogue'].replace('{{user}}', name1).replace('{{char}}', _json['char_name'])
return upload_character(json.dumps(_json), img, tavern=True)
def upload_your_profile_picture(img):
img = Image.open(io.BytesIO(img))
img.save(Path(f'img_me.png'))
print(f'Profile picture saved to "img_me.png"')
suffix = '_pygmalion' if 'pygmalion' in model_name.lower() else ''
with gr.Blocks(css=css+".h-\[40vh\] {height: 66.67vh} .gradio-container {max-width: 800px; margin-left: auto; margin-right: auto}", analytics_enabled=False) as interface:
if args.cai_chat:
display1 = gr.HTML(value=generate_chat_html([], "", "", character))
else:
display1 = gr.Chatbot()
textbox = gr.Textbox(label='Input')
btn = gr.Button("Generate")
with gr.Row():
stop = gr.Button("Stop")
btn_regenerate = gr.Button("Regenerate")
btn_remove_last = gr.Button("Remove last")
btn_clear = gr.Button("Clear history")
with gr.Row():
with gr.Column():
length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
with gr.Row():
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
with gr.Column():
history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size in prompt (0 for no limit)', value=settings['history_size'])
with gr.Row():
preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'], label='Generation parameters preset')
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context')
with gr.Row():
character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
with gr.Row():
check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
with gr.Row():
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
gr.Markdown('Upload')
upload = gr.File(type='binary')
with gr.Column():
gr.Markdown('Download')
download = gr.File()
save_btn = gr.Button(value="Click me")
with gr.Tab('Upload character'):
with gr.Row():
with gr.Column():
gr.Markdown('1. Select the JSON file')
upload_char = gr.File(type='binary')
with gr.Column():
gr.Markdown('2. Select your character\'s profile picture (optional)')
upload_img = gr.File(type='binary')
upload_btn = gr.Button(value="Submit")
with gr.Tab('Upload your profile picture'):
upload_img_me = gr.File(type='binary')
with gr.Tab('Upload TavernAI Character Card'):
upload_img_tavern = gr.File(type='binary')
if args.extensions is not None:
extensions_ui_elements = []
default_values = []
gr.Markdown('## Extensions parameters')
for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
if extension_state[ext][0] == True:
params = eval(f"extensions.{ext}.script.params")
for param in params:
_id = f"{ext}-{param}"
default_value = settings[_id] if _id in settings else params[param]
default_values.append(default_value)
if type(params[param]) == str:
extensions_ui_elements.append(gr.Textbox(value=default_value, label=f"{ext}-{param}"))
elif type(params[param]) in [int, float]:
extensions_ui_elements.append(gr.Number(value=default_value, label=f"{ext}-{param}"))
elif type(params[param]) == bool:
extensions_ui_elements.append(gr.Checkbox(value=default_value, label=f"{ext}-{param}"))
def update_extensions_parameters(*kwargs):
i = 0
for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
if extension_state[ext][0] == True:
params = eval(f"extensions.{ext}.script.params")
for param in params:
if len(kwargs) >= i+1:
params[param] = eval(f"kwargs[{i}]")
i += 1
update_extensions_parameters(*default_values)
btn_extensions = gr.Button("Apply")
btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
input_params = [textbox, length_slider, preset_menu, model_menu, name1, name2, context, check, history_size_slider]
if args.cai_chat:
gen_event = btn.click(cai_chatbot_wrapper, input_params, display1, show_progress=args.no_stream, api_name="textgen")
gen_event2 = textbox.submit(cai_chatbot_wrapper, input_params, display1, show_progress=args.no_stream)
else:
gen_event = btn.click(chatbot_wrapper, input_params, display1, show_progress=args.no_stream, api_name="textgen")
gen_event2 = textbox.submit(chatbot_wrapper, input_params, display1, show_progress=args.no_stream)
gen_event3 = btn_regenerate.click(regenerate_wrapper, input_params, display1, show_progress=args.no_stream)
btn_clear.click(clear_chat_log, [character_menu, name1, name2], display1)
btn_remove_last.click(remove_last_message, [name1, name2], [display1, textbox], show_progress=False)
btn.click(lambda x: "", textbox, textbox, show_progress=False)
btn_regenerate.click(lambda x: "", textbox, textbox, show_progress=False)
textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
stop.click(None, None, None, cancels=[gen_event, gen_event2, gen_event3])
save_btn.click(save_history, inputs=[], outputs=[download])
character_menu.change(load_character, [character_menu, name1, name2], [name2, context, display1])
upload.upload(upload_history, [upload, name1, name2], [])
upload_btn.click(upload_character, [upload_char, upload_img], [character_menu])
upload_img_tavern.upload(upload_tavern_character, [upload_img_tavern, name1, name2], [character_menu])
upload_img_me.upload(upload_your_profile_picture, [upload_img_me], [])
if args.cai_chat:
upload.upload(redraw_html, [name1, name2], [display1])
upload_img_me.upload(redraw_html, [name1, name2], [display1])
else:
upload.upload(lambda : history['visible'], [], [display1])
upload_img_me.upload(lambda : history['visible'], [], [display1])
elif args.notebook:
with gr.Blocks(css=css, analytics_enabled=False) as interface:
gr.Markdown(description)
with gr.Tab('Raw'):
textbox = gr.Textbox(value=default_text, lines=23)
with gr.Tab('Markdown'):
markdown = gr.Markdown()
with gr.Tab('HTML'):
html = gr.HTML()
btn = gr.Button("Generate")
stop = gr.Button("Stop")
length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
with gr.Row():
with gr.Column():
with gr.Row():
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
with gr.Column():
with gr.Row():
preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Generation parameters preset')
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
gen_event = btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen")
gen_event2 = textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [textbox, markdown, html], show_progress=args.no_stream)
stop.click(None, None, None, cancels=[gen_event, gen_event2])
else:
with gr.Blocks(css=css, analytics_enabled=False) as interface:
gr.Markdown(description)
with gr.Row():
with gr.Column():
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
length_slider = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
with gr.Row():
preset_menu = gr.Dropdown(choices=available_presets, value=settings['preset'], label='Generation parameters preset')
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
with gr.Row():
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
btn = gr.Button("Generate")
with gr.Row():
with gr.Column():
cont = gr.Button("Continue")
with gr.Column():
stop = gr.Button("Stop")
with gr.Column():
with gr.Tab('Raw'):
output_textbox = gr.Textbox(lines=15, label='Output')
with gr.Tab('Markdown'):
markdown = gr.Markdown()
with gr.Tab('HTML'):
html = gr.HTML()
gen_event = btn.click(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen")
gen_event2 = textbox.submit(generate_reply, [textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream)
cont_event = cont.click(generate_reply, [output_textbox, length_slider, preset_menu, model_menu], [output_textbox, markdown, html], show_progress=args.no_stream)
stop.click(None, None, None, cancels=[gen_event, gen_event2, cont_event])
interface.queue()
if args.listen:
interface.launch(share=args.share, server_name="0.0.0.0", server_port=args.listen_port)
else:
interface.launch(share=args.share, server_port=args.listen_port)