mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-30 11:28:58 +01:00
211 lines
7.0 KiB
Python
211 lines
7.0 KiB
Python
import json
|
|
import time
|
|
from typing import Dict, List
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class GenerationOptions(BaseModel):
|
|
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.")
|
|
min_p: float = 0
|
|
dynamic_temperature: bool = False
|
|
dynatemp_low: float = 1
|
|
dynatemp_high: float = 1
|
|
dynatemp_exponent: float = 1
|
|
smoothing_factor: float = 0
|
|
top_k: int = 0
|
|
repetition_penalty: float = 1
|
|
repetition_penalty_range: int = 1024
|
|
typical_p: float = 1
|
|
tfs: float = 1
|
|
top_a: float = 0
|
|
epsilon_cutoff: float = 0
|
|
eta_cutoff: float = 0
|
|
guidance_scale: float = 1
|
|
negative_prompt: str = ''
|
|
penalty_alpha: float = 0
|
|
mirostat_mode: int = 0
|
|
mirostat_tau: float = 5
|
|
mirostat_eta: float = 0.1
|
|
temperature_last: bool = False
|
|
do_sample: bool = True
|
|
seed: int = -1
|
|
encoder_repetition_penalty: float = 1
|
|
no_repeat_ngram_size: int = 0
|
|
min_length: int = 0
|
|
num_beams: int = 1
|
|
length_penalty: float = 1
|
|
early_stopping: bool = False
|
|
truncation_length: int = 0
|
|
max_tokens_second: int = 0
|
|
prompt_lookup_num_tokens: int = 0
|
|
custom_token_bans: str = ""
|
|
sampler_priority: List[str] | str | None = Field(default=None, description="List of samplers where the first items will appear first in the stack. Example: [\"top_k\", \"temperature\", \"top_p\"].")
|
|
auto_max_new_tokens: bool = False
|
|
ban_eos_token: bool = False
|
|
add_bos_token: bool = True
|
|
skip_special_tokens: bool = True
|
|
grammar_string: str = ""
|
|
|
|
|
|
class CompletionRequestParams(BaseModel):
|
|
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
|
|
prompt: str | List[str]
|
|
best_of: int | None = Field(default=1, description="Unused parameter.")
|
|
echo: bool | None = False
|
|
frequency_penalty: float | None = 0
|
|
logit_bias: dict | None = None
|
|
logprobs: int | None = None
|
|
max_tokens: int | None = 16
|
|
n: int | None = Field(default=1, description="Unused parameter.")
|
|
presence_penalty: float | None = 0
|
|
stop: str | List[str] | None = None
|
|
stream: bool | None = False
|
|
suffix: str | None = None
|
|
temperature: float | None = 1
|
|
top_p: float | None = 1
|
|
user: str | None = Field(default=None, description="Unused parameter.")
|
|
|
|
|
|
class CompletionRequest(GenerationOptions, CompletionRequestParams):
|
|
pass
|
|
|
|
|
|
class CompletionResponse(BaseModel):
|
|
id: str
|
|
choices: List[dict]
|
|
created: int = int(time.time())
|
|
model: str
|
|
object: str = "text_completion"
|
|
usage: dict
|
|
|
|
|
|
class ChatCompletionRequestParams(BaseModel):
|
|
messages: List[dict]
|
|
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
|
|
frequency_penalty: float | None = 0
|
|
function_call: str | dict | None = Field(default=None, description="Unused parameter.")
|
|
functions: List[dict] | None = Field(default=None, description="Unused parameter.")
|
|
logit_bias: dict | None = None
|
|
max_tokens: int | None = None
|
|
n: int | None = Field(default=1, description="Unused parameter.")
|
|
presence_penalty: float | None = 0
|
|
stop: str | List[str] | None = None
|
|
stream: bool | None = False
|
|
temperature: float | None = 1
|
|
top_p: float | None = 1
|
|
user: str | None = Field(default=None, description="Unused parameter.")
|
|
|
|
mode: str = Field(default='instruct', description="Valid options: instruct, chat, chat-instruct.")
|
|
|
|
instruction_template: str | None = Field(default=None, description="An instruction template defined under text-generation-webui/instruction-templates. If not set, the correct template will be automatically obtained from the model metadata.")
|
|
instruction_template_str: str | None = Field(default=None, description="A Jinja2 instruction template. If set, will take precedence over everything else.")
|
|
|
|
character: str | None = Field(default=None, description="A character defined under text-generation-webui/characters. If not set, the default \"Assistant\" character will be used.")
|
|
user_name: str | None = Field(default=None, description="Your name (the user). By default, it's \"You\".", alias="name1")
|
|
bot_name: str | None = Field(default=None, description="Overwrites the value set by character field.", alias="name2")
|
|
context: str | None = Field(default=None, description="Overwrites the value set by character field.")
|
|
greeting: str | None = Field(default=None, description="Overwrites the value set by character field.")
|
|
chat_template_str: str | None = Field(default=None, description="Jinja2 template for chat.")
|
|
|
|
chat_instruct_command: str | None = None
|
|
|
|
continue_: bool = Field(default=False, description="Makes the last bot message in the history be continued instead of starting a new message.")
|
|
|
|
|
|
class ChatCompletionRequest(GenerationOptions, ChatCompletionRequestParams):
|
|
pass
|
|
|
|
|
|
class ChatCompletionResponse(BaseModel):
|
|
id: str
|
|
choices: List[dict]
|
|
created: int = int(time.time())
|
|
model: str
|
|
object: str = "chat.completion"
|
|
usage: dict
|
|
|
|
|
|
class EmbeddingsRequest(BaseModel):
|
|
input: str | List[str] | List[int] | List[List[int]]
|
|
model: str | None = Field(default=None, description="Unused parameter. To change the model, set the OPENEDAI_EMBEDDING_MODEL and OPENEDAI_EMBEDDING_DEVICE environment variables before starting the server.")
|
|
encoding_format: str = Field(default="float", description="Can be float or base64.")
|
|
user: str | None = Field(default=None, description="Unused parameter.")
|
|
|
|
|
|
class EmbeddingsResponse(BaseModel):
|
|
index: int
|
|
embedding: List[float]
|
|
object: str = "embedding"
|
|
|
|
|
|
class EncodeRequest(BaseModel):
|
|
text: str
|
|
|
|
|
|
class EncodeResponse(BaseModel):
|
|
tokens: List[int]
|
|
length: int
|
|
|
|
|
|
class DecodeRequest(BaseModel):
|
|
tokens: List[int]
|
|
|
|
|
|
class DecodeResponse(BaseModel):
|
|
text: str
|
|
|
|
|
|
class TokenCountResponse(BaseModel):
|
|
length: int
|
|
|
|
|
|
class LogitsRequestParams(BaseModel):
|
|
prompt: str
|
|
use_samplers: bool = False
|
|
top_logits: int | None = 50
|
|
frequency_penalty: float | None = 0
|
|
max_tokens: int | None = 16
|
|
presence_penalty: float | None = 0
|
|
temperature: float | None = 1
|
|
top_p: float | None = 1
|
|
|
|
|
|
class LogitsRequest(GenerationOptions, LogitsRequestParams):
|
|
pass
|
|
|
|
|
|
class LogitsResponse(BaseModel):
|
|
logits: Dict[str, float]
|
|
|
|
|
|
class ModelInfoResponse(BaseModel):
|
|
model_name: str
|
|
lora_names: List[str]
|
|
|
|
|
|
class ModelListResponse(BaseModel):
|
|
model_names: List[str]
|
|
|
|
|
|
class LoadModelRequest(BaseModel):
|
|
model_name: str
|
|
args: dict | None = None
|
|
settings: dict | None = None
|
|
|
|
|
|
class LoraListResponse(BaseModel):
|
|
lora_names: List[str]
|
|
|
|
|
|
class LoadLorasRequest(BaseModel):
|
|
lora_names: List[str]
|
|
|
|
|
|
def to_json(obj):
|
|
return json.dumps(obj.__dict__, indent=4)
|
|
|
|
|
|
def to_dict(obj):
|
|
return obj.__dict__
|