matatonic 3e7feb699c
extensions/openai: Major openai extension updates & fixes (#3049)
* many openai updates

* total reorg & cleanup.

* fixups

* missing import os for images

* +moderations, custom_stopping_strings, more fixes

* fix bugs in completion streaming

* moderation fix (flagged)

* updated moderation categories

---------

Co-authored-by: Matthew Ashton <mashton-gitlab@zhero.org>
2023-07-11 18:50:08 -03:00

50 lines
1.7 KiB
Python

import os
from sentence_transformers import SentenceTransformer
from extensions.openai.utils import float_list_to_base64, debug_msg
from extensions.openai.errors import *
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
embeddings_model = None
def load_embedding_model(model):
try:
emb_model = SentenceTransformer(model)
print(f"\nLoaded embedding model: {model}, max sequence length: {emb_model.max_seq_length}")
except Exception as e:
print(f"\nError: Failed to load embedding model: {model}")
raise ServiceUnavailableError(f"Error: Failed to load embedding model: {model}", internal_message = repr(e))
return emb_model
def get_embeddings_model():
global embeddings_model, st_model
if st_model and not embeddings_model:
embeddings_model = load_embedding_model(st_model) # lazy load the model
return embeddings_model
def get_embeddings_model_name():
global st_model
return st_model
def embeddings(input: list, encoding_format: str):
embeddings = get_embeddings_model().encode(input).tolist()
if encoding_format == "base64":
data = [{"object": "embedding", "embedding": float_list_to_base64(emb), "index": n} for n, emb in enumerate(embeddings)]
else:
data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)]
response = {
"object": "list",
"data": data,
"model": st_model, # return the real model
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
debug_msg(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
return response